● 300.最长递增子序列
1.dp数组含义。dp[i]:以nums[i]为结尾的递增子序列的最大长度。
注意一定是以nums[i]结尾,如果dp[i]定义错误的话,暴力也不知道咋整。
2.递推公式。这道题与背包的单词划分比较像,一个单层循环是弄不出来的,外层循环i,内层循环j。即当前下标i的递增子序列长度,其实和i之前的下表j的子序列长度有关系。准确的说,i的递增子序列长度就是由[0,i-1]范围内的子序列长度得到的,要取他们中的一个最大值。分析如下:
如果nums[i]比nums[j]小或者相等,那么就不能把nums[i]拼到nums[j]结尾的序列上,即不能根据dp[j]得到dp[i],因为dp[i]一定是nums[i]为结尾的递增子序列的最大长度,nums[i]要比这个序列中的其他元素都大。
所以递推公式只考虑nums[i]比nums[j]大的情况,一开始,j=i-1,这个序列里面只有i自己,所以dp[i]=1,然后从后往前依次比较要不要加入j的子序列,有可能i加入j的这个子序列后长度更大,长度是dp[j]+1;也有可能加入后长度没变大,所以保持原样。
所以dp[i]应该取这两个的较大值:dp[i]=max(dp[j]+1,dp[i]);
代码随想录:注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值(从后往前依次比较取得的)。
公式结合例子更好理解,举例:
nums = [10,9,2,5,3,7,101,18]
到元素3的时候,dp[4]一开始是1,意味着这个子序列只有自己;与5比较比5小,不能把自己拼到5的子序列后面,即不能由dp[3]得到,跳过;与2比较,可以拼到2后面,取max为2;比9大;比10大。所以dp[4]=2。
3.初始化。dp[i]的最大长度,一开始只有它自己一个元素组成一个序列,所以均初始化为1。
4.遍历顺序。根据递推公式过程,i从左到右,j从右到左。
5.打印。
代码如下。仍然注意dp数组的含义,最后不是返回dp[nums.size()-1],而是返回dp中的最大值。
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
vector<int> dp(nums.size(),1);
int maxlen=1;
for(int i=0;i<nums.size();++i){
for(int j=i-1;j>=0;--j){
if(nums[j]<nums[i]){
dp[i]=max(dp[j]+1,dp[i]);
maxlen=max(dp[i],maxlen);
}
}
}
return maxlen;
}
};
● 674. 最长连续递增序列
这道题和上一道题的区别是:递增序列是连续的,那么不需要内层循环遍历[i-1,0],因为nums[i]只能拼接到nums[i-1]上面,即根据dp[i-1]得到dp[i],再前面的dp元素跟i扯不上关系。
所以一层循环就能实现,也不用比较max值。
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
vector<int> dp(nums.size(),1);
int maxlen=1;
for(int i=1;i<nums.size();++i){
if(nums[i]>nums[i-1]){
dp[i]=dp[i-1]+1;
maxlen=max(maxlen,dp[i]);
}
}
return maxlen;
}
};
● 718. 最长重复子数组
1.dp数组含义。
根据上面两道题,dp[i]数组含义也是以下标i元素为结尾的所要求的特定序列的长度,根据i前面的dp得到i的dp。
因为两个数字,所以dp数组得变成二维:dp[i][j]:以nums1[i-1]或者说以nums2[j-1]元素结束的公共子序列的最大长度,其实就是两个子数组(2个子数组分别是:nums1前i个;nums2前j个)的公共后缀的最长长度。所以是两层循环,遍历nums1的前1个到前n1个,其中又遍历nums2的前1个到前n2个,最后返回过程中的比较得出的最大长度maxlen。
所以这个结论一定要贯穿过程中:从数组1 i-1下标、数组2 j-1下标开始,挨个从右往左倒着比较,有dp[i][j]个元素是相同的。如123,103:dp[3][3]=1。
2.递推公式。
根据上面的那个结论,dp[i][j]说明nums1[i-1]==nums2[j-1],而且nums1的i-2前面和nums2的j-2前面还有dp[i][j]-1长度的元素是相同的。根据定义:nums1的i-2前面和nums2的j-2前面的公共后缀最长长度是dp[i-1][j-1]。
所以if(nums1[i-1]==nums2[j-1]) dp[i][j]-1=dp[i-1][j-1]。即dp[i][j] = dp[i - 1][j - 1] + 1;
3.初始化。
dp[i][j]中i、j有一个0都是无意义的,所以直接初始化为0。
这就是为什么dp数组下标相对于nums下标+1的原因,偏移1个可以直接初始化为0,如果不偏移,dp[i][j]是nums1前i+1个和nusm2前j+1个子数组的公共后缀最长长度,那么第1行和第1列需要挨个判断,相等的话为1,不相等为0。而且偏移一个也是好理解的:nums1前i个;nums2前j个的2个子数组。
4.遍历顺序。两层循环要统计出所有子数组的情况,所以两个数组 要从0到size()-1,又dp数组下标相对于nums下标+1,所以i从1到nums1.size(),j从1到nums2.size()。
5.打印。
代码:
class Solution {
public:
int findLength(vector<int>& nums1, vector<int>& nums2) {
int n1=nums1.size();
int n2=nums2.size();
int maxlen=0;
vector<vector<int>> dp(n1+1,vector<int>(n2+1,0));
for(int i=1;i<=n1;++i){
for(int j=1;j<=n2;++j){
if(nums1[i-1]==nums2[j-1])//可以 以nums1[i-1]/nums2[j-1]作为结尾,递推
{
dp[i][j]=dp[i-1][j-1]+1;
maxlen=max(maxlen,dp[i][j]);
}
}
}
return maxlen;
}
};