不同条件下对土地利用类型统计分析

 

 

本次主要是针对矢量数据的统计分析,以【土地利用变化分析】土地利用转移矩阵中的数据为例—成都市各区边界及2020年Global30土地覆盖。具体分为四部分:

一、如何统计不同土地利用类型的面积

二、如何统计不同行政区内各类土地利用类型的面积

三、如何如何将行政区信息追加到每块地类图斑上

四、如何统计不同高程、坡度下各类土地利用类型的面积

一、如何统计不同土地利用类型的面积

使用工具【Summary Statistics  汇总统计数据】统计各土地利用类型总面积。输入表是成都市土地矢量数据,统计字段选择面积,统计类型为求和,也可以统计最小值、最大值、平均值等。案例分组字段选择表示地类名称的字段F2020。

结果输出的是一张统计表,面积单位平方千米。

 

二、如何统计不同区域内各类土地利用类型的面积

使用工具【Tabulate Intersection  交集制表】进行统计。

输出结果如下,不知怎么回事在我笔记本上输出总是报错000117,换台式就没试试,经常这样,这台电脑做不出来,换个地啥问题都没有(垃圾软件!)

输出的表转到EXCLE里插入数据透视表

 

三、如何如何将行政区划信息追加到每块地类图斑上

有一份矢量数据,数据是行政区域也可以是其他,希望知道每个图斑隶属于哪个区域,可以使用工具【Intersect 相交】过程没什么好说的,输出结果如下,每块地都有其归属地的信息:

另外,如果有一块图斑涉及到好几个区域,如果不希望图斑被切分,在属性表中可以显示它所在的所有区域,可以使用工具【Spatial Join 空间连接】。

 

四、如何统计不同高程、坡度下各类土地利用类型的面积

按照1000m间隔将高程分为6个等级。坡度按照双评价指南中的分5级【双评价笔记】农业指向之土地资源评价,先把它们两个重分类咯,高程是1—6代表,坡度是1—5代表。

1、针对栅格:现在高程和坡度数据都是栅格数据,土地利用最开始下载下来也是栅格数据,那么要统计不同高程或坡度下的各类土地类型,可以用工具【面积制表】工具,统计出来的是像元栅格数,计算面积=栅格数×空间分辨率×空间分辨率。(注意各数据坐标系应该统一转换为一致的投影坐标,否则算面积是不对的)。坡度同理,栅格统计方法我觉得太绕了,就不再写什么东西了,我想下次单独写一下栅格统计。

2、针对矢量:那就是把土地利用数据,高程重分类和坡度重分类统一转为矢量数据,进行相交,然后再进行第一部分中的【汇总统计数据】。案例分组字段选择表示土地利用的字段和表示高程/坡度分级字段。

以高程为例,输出表后放到EXCLE插入数据透视表整理。

或者就跟第二部分一样,直接使用【交集制表】工具,输出得到结果。

矢量统计就是【汇总统计数据】【交集制表】和【频数统计】,栅格统计下次再来,有错误多多指正。

 

 

END

如果在实验过程中有什么地方遇到问题可以后台留言,竭力解答,大概率不会。更多欢迎关注公众号【一点规划】

<think>嗯,用户想研究极端气候对土地利用类型的影响,特别是气候变化导致的土地利用类型变化分析。首先,我需要理清这个问题涉及的关键步骤和方法。根据用户提供的引用内容,特别是引用[1]和[2],应该结合气候模型和土地利用变化模型,比如GeoSOS-FLUS模型,来进行分析。 首先,用户可能需要了解数据收集的部分。气候数据包括极端气候指标,比如极端温度、降水等,这些数据可以从气象站或气候模型获取。土地利用数据则需要历史和现状的数据,可能来自遥感影像解译,比如Landsat或MODIS数据。同时,社会经济数据如人口、GDP也不能忽视,因为它们与人类活动对土地利用的影响有关联。 接下来是数据处理和分析。用户可能需要计算极端气候指数,使用RClimDex这样的工具。然后,土地利用变化分析可以通过转移矩阵和动态度模型来量化变化情况。这部分需要确保用户掌握这些分析方法的具体操作,可能需要指导他们使用GIS软件或Python、R进行处理。 然后是模型构建与模拟。引用[2]提到的FLUS模型非常适合这里的情境,因为它能模拟未来土地利用变化,并考虑多种驱动因素,包括气候变量。用户需要学习如何将极端气候指标作为驱动因子输入模型,设置合适的转换规则和适宜性图层。同时,结合气候情景如SSPs-RCPs进行多情景模拟,能够帮助预测不同气候政策下的土地利用变化。 影响评估与可视化是关键的一步。用户需要分析极端气候如何影响特定土地类型,比如农田或湿地,可能涉及统计分析如回归模型,或者空间分析如热点检测。可视化方面,GIS软件和Python的matplotlib、seaborn库能帮助生成直观的图表,展示变化趋势和空间分布。 最后,用户可能需要提出适应性规划建议,这需要基于模拟结果和政策分析。例如,如何调整农业布局或生态保护措施来应对气候变化的影响。 在思考过程中,还要注意用户可能的潜在需求。比如,他们是否熟悉FLUS模型的操作?是否需要推荐学习资源或教程?或者是否需要指导如何获取和处理气候数据?此外,用户可能希望了解实际案例研究,以参考已有的分析方法,确保他们的研究设计合理。 另外,引用[1]提到人类活动的影响,因此在模型中需要整合自然和人文驱动因素,避免单一因素分析。这可能涉及到多源数据的融合和权重设置,需要用户具备一定的多变量分析能力。 最后,生成相关问题时,应围绕用户的研究方向展开,比如模型的选择、驱动因子的处理、影响评估方法等,帮助他们深入探索各个步骤中的具体挑战和解决方案。</think>### 气候变化导致的土地利用类型变化分析步骤 1. **数据准备与处理** - **气候数据**:收集历史及未来气候情景数据(如CMIP6模型数据),包括极端气候指标(如极端高温日数、强降水频率、干旱指数等)[^1]。 - **土地利用数据**:获取历史土地利用遥感数据(如MODIS、Landsat解译结果)和目标区域边界数据。 - **驱动因子**:整合自然因子(地形、土壤类型)和人文因子(人口密度、GDP、政策)[^2]。 2. **极端气候与土地利用变化关联分析** - 使用统计方法(如相关性分析、回归模型)量化极端气候事件与土地利用变化的关联。 - 示例公式: $$ \Delta L = \alpha \cdot C_{\text{extreme}} + \beta \cdot H_{\text{human}} + \epsilon $$ 其中$\Delta L$为土地利用变化率,$C_{\text{extreme}}$为极端气候指标,$H_{\text{human}}$为人类活动强度。 3. **模型构建与情景模拟** - 采用**FLUS模型**(引用[2]中提到的工具)模拟未来土地利用变化: - 输入气候预测数据(如RCP情景)和经济社会情景(如SSP路径)。 - 设置土地利用类型转换规则,例如极端干旱情景下农田向草地的转化概率。 - 代码示例(模型参数设置片段): ```python # FLUS模型气候因子权重设置示例 climate_factors = { 'temperature_extreme': 0.3, 'precipitation_anomaly': 0.25, 'drought_index': 0.45 } ``` 4. **影响评估与空间可视化** - 通过GIS工具生成**土地利用变化热点图**,叠加极端气候频率变化区域。 - 分析关键生态敏感区(如湿地、森林)受气候影响的脆弱性,使用**景观格局指数**(如斑块密度、聚集度)量化生态效应。 5. **适应性策略建议** - 基于模拟结果提出土地利用优化方案,例如: - 在极端降水频发区域限制城市扩张,保留自然渗水绿地[^1]。 - 调整农业种植结构以适应干旱趋势(如推广耐旱作物)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值