[HDU 4738] Caocao‘s Bridges | Tarjan 求割边

本文通过三国时期赤壁之战的背景,引入图论中的割边概念。题目要求找出能切断曹军岛屿联系的最少士兵数量,实现周瑜破坏一座桥梁的目标。算法采用 Tarjan 强连通分量算法寻找割边,解决实际问题的同时展示了图论在军事策略中的应用。
摘要由CSDN通过智能技术生成

Problem Description

Caocao was defeated by Zhuge Liang and Zhou Yu in the battle of Chibi. But he wouldn’t give up. Caocao’s army still was not good at water battles, so he came up with another idea. He built many islands in the Changjiang river, and based on those islands, Caocao’s army could easily attack Zhou Yu’s troop. Caocao also built bridges connecting islands. If all islands were connected by bridges, Caocao’s army could be deployed very conveniently among those islands. Zhou Yu couldn’t stand with that, so he wanted to destroy some Caocao’s bridges so one or more islands would be seperated from other islands. But Zhou Yu had only one bomb which was left by Zhuge Liang, so he could only destroy one bridge. Zhou Yu must send someone carrying the bomb to destroy the bridge. There might be guards on bridges. The soldier number of the bombing team couldn’t be less than the guard number of a bridge, or the mission would fail. Please figure out as least how many soldiers Zhou Yu have to sent to complete the island seperating mission.

Input

There are no more than 12 test cases.

In each test case:

The first line contains two integers, N and M, meaning that there are N islands and M bridges. All the islands are numbered from 1 to N. ( 2 < = N < = 1000 , 0 < M < = N 2 2 <= N <= 1000, 0 < M <= N^2 2<=N<=1000,0<M<=N2 )

Next M lines describes M bridges. Each line contains three integers U,V and W, meaning that there is a bridge connecting island U and island V, and there are W guards on that bridge. ( U ≠ V a n d 0 < = W < = 10 , 000 U ≠ V and 0 <= W <= 10,000 U=Vand0<=W<=10,000 )

The input ends with N = 0 and M = 0.

Output
For each test case, print the minimum soldier number Zhou Yu had to send to complete the mission. If Zhou Yu couldn’t succeed any way, print -1 instead.

Sample Input

3 3
1 2 7
2 3 4
3 1 4
3 2
1 2 7
2 3 4
0 0

Sample Output

-1
4

思路:
给定一个n个点,m条边的无向图,求出该图的割边,如果割边不存在输出0,图不连通输出-1
如果说割边的边权为0,那么说答案为1
输入中有重边的情况,重边是不可能为割边的,所以就要输出-1
其余的输出找到的割边的边权[最小值]

struct node{
	int to,nex,w;
}e[maxn];
int cnt,head[1007];
void add(int u,int v){
	e[cnt].to = v;
	e[cnt].nex = head[u];
	head[u] =  cnt ++;
}
int edge[1007][1007];
vector<int> ans;
int tim;
int dfn[1007],low[1007];
void Tarjan(int u,int father) {
	dfn[u] = low[u] = ++tim;
	for(int i=head[u];~i;i=e[i].nex) {
		int to = e[i].to;
		if(!dfn[to]){
			Tarjan(to,u);
			low[u] = min(low[u],low[to]);
			if(low[to] > dfn[u]) {
				ans.push_back(edge[u][to]);
			}
		}else if(to != father) {
			low[u] = min(low[u],dfn[to]);
		}
	}
}
int n,m;
int main() {
	while(1){
		n = read,m = read;
		if(n == 0 && m == 0) break;
		tim = 0,cnt = 0;
		for(int i=1;i<=n;i++) {
			head[i] = -1;
			dfn[i] = low[i] = 0;
			for(int j=1;j<=n;j++) {
				edge[i][j] = 0;
			}
		}
		for(int i=1;i<=m;i++){
			int u = read,v = read,w = read;
			if(edge[u][v] != 0) {
				edge[u][v] = edge[v][u] = 0x3f3f3f3f;
			}
			else{
				edge[u][v] = edge[v][u] = w;
				add(u,v);
				add(v,u);
			}
		}
		int flag = 0;
		ans.clear();
		for(int i=1;i<=n;i++){
			if(!dfn[i]){
				flag ++;
				if(flag >= 2) break;
				Tarjan(i,0);
			}
		}
		if(flag >= 2) {
			puts("0");
			continue;
		}
		if(!ans.size() || !flag) {
			puts("-1");
			continue;
		}
		int out = 0x3f3f3f3f;
		for(int i=0;i<(int)ans.size();i++) {
			out = min(out,ans[i]);
		}
		if(out == 0) out ++;
		printf("%d\n",(out == 0x3f3f3f3f?-1:out));
		/// not connected -> 0
		/// 
		
	}
	return 0;
}
/**


**/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值