参考书籍《动手学深度学习(pytorch版),参考网址为:
https://tangshusen.me/Dive-into-DL-PyTorch/#/chapter04_DL_computation/4.1_model-construction
https://zh-v2.d2l.ai/chapter_deep-learning-computation/model-construction.html
请大家也多多支持这两个很好用的平台~
大部分内容为书中内容,也有部分自己实验和添加的内容,如涉及侵权,会进行删除。
一、模型构造
回顾一下在多层感知机的简洁实现中含单隐藏层的多层感知机的实现方法。我们首先构造Sequential实例,然后依次添加两个全连接层。其中第一层的输出大小为256,即隐藏层单元个数是256;第二层的输出大小为10,即输出层单元个数是10。我们在上一章的其他节中也使用了Sequential类构造模型。这里我们介绍另外一种基于Module类的模型构造方法:它让模型构造更加灵活。
1.1 继承Module类来构造模型
Module类是nn模块里提供的一个模型构造类,是所有神经网络模块的基类,我们可以继承它来定义我们想要的模型。下面继承Module类构造本节开头提到的多层感知机。这里定义的MLP类重载了Module类的__init__函数和forward函数。它们分别用于创建模型参数和定义前向计算。前向计算也即正向传播。
demo1:
import torch
from torch import nn
class MLP(nn.Module):
# 声明带有模型参数的层,这里声明了两个全连接层
def __init__(self, **kwargs):
# 调用MLP父类Module的构造函数来进行必要的初始化。这样在构造实例时还可以指定其他函数
# 参数,如“模型参数的访问、初始化和共享”一节将介绍的模型参数params
super(MLP, self).__init__(**kwargs)
self.hidden = nn.Linear(784, 256) # 隐藏层
self.act = nn.ReLU()
self.output = nn.Linear(256, 10) # 输出层
# 定义模型的前向计算,即如何根据输入x计算返回所需要的模型输出
def forward(self, x):
a = self.act(self.hidden(x))
return self.output(a)
X = torch.rand(2, 784)
net = MLP() # 创建一个实例
print(net)
print(net(X))
out1:
MLP(
(hidden): Linear(in_features=784, out_features=256, bias=True)
(act): ReLU()
(output): Linear(in_features=256, out_features=10, bias=True)
)
tensor([[-0.1412, 0.3369, -0.3535, -0.1426, -0.0124, 0.2102, 0.0440, -0.0997,
0.0469, 0.0598],
[-0.1235, 0.3672, -0.3056, -0.1914, 0.0456, 0.1594, 0.0753, -0.0011,
0.1199, 0.0562]], grad_fn=<AddmmBackward>)
以上的MLP类中无须定义反向传播函数。系统将通过自动求梯度而自动生成反向传播所需的backward函数。
我们可以实例化MLP类得到模型变量net。初始化net并传入输入数据X做一次前向计算。其中,net(X)会调用MLP继承自Module类的__call__函数,这个函数将调用MLP类定义的forward函数来完成前向计算。
注意,这里并没有将Module类命名为Layer(层)或者Model(模型)之类的名字,这是因为该类是一个可供自由组建的部件。它的子类既可以是一个层(如PyTorch提供的Linear类),又可以是一个模型(如这里定义的MLP类),或者是模型的一个部分。我们下面通过两个例子来展示它的灵活性。
super( test, self).__init__()
首先找到test的父类(比如是类A),然后把类test的对象self转换为类A的对象,然后“被转换”的类A对象调用自己的__init__函数。
其中,super()用法参考链接:https://blog.csdn.net/a__int__/article/details/104600972
1.2 Module的子类
我们刚刚提到,Module类是一个通用的部件。事实上,PyTorch还实现了继承自Module的可以方便构建模型的类: 如Sequential、ModuleList和ModuleDict等等。
1.2.1 Sequential类
当模型的前向计算为简单串联各个层的计算时,Sequential类可以通过更加简单的方式定义模型。这正是Sequential类的目的:它可以接收一个子模块的有序字典(OrderedDict)或者一系列子模块作为参数来逐一添加Module的实例,而模型的前向计算就是将这些实例按添加的顺序逐一计算。
下面我们实现一个与Sequential类有相同功能的MySequential类。这或许可以帮助读者更加清晰地理解Sequential类的工作机制。
demo2:
# Sequential类
from collections import OrderedDict # 保持Key的顺序
class MySequential(nn.Module):
def __init__(self, *args):
super(MySequential, self).__init__()
if len(args) == 1 and isinstance(args[0], OrderedDict): # 如果传入的是一个OrderedDict
for key, module in args[0].items():
self.add_module(key, module) # add_module方法会将module添加进self._modules(一个OrderedDict)
else: # 传入的是一些Module
for idx, module in enumerate(args):
self.add_module(str(idx), module)
def forward(self, input):
# self._modules返回一个 OrderedDict,保证会按照成员添加时的顺序遍历成员
for module in self._modules.values():
input = module(input)
return input
net = MySequential(
nn.Linear(784, 256),
nn.ReLU(),
nn.Linear(256, 10),
)
print(net)
print(net(X))
out2:
MySequential(
(0): Linear(in_features=784, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=10, bias=True)
)
tensor([[ 0.1418, 0.0071, -0.0182, 0.0574, -0.2706, -0.1830, 0.0574, 0.1369,
0.2271, -0.0421],
[-0.0328, -0.0201, 0.1502, 0.1099, -0.0528, -0.2136, 0.0483, 0.0781,
0.3694, -0.1114]], grad_fn=<AddmmBackward>)
其中,collections模块中OrderedDict的使用方法参考链接:
https://blog.csdn.net/brucewong0516/article/details/83992642
1.2.2 ModuleList类
ModuleList接收一个子模块的列表作为输入,然后也可以类似List那样进行append和extend操作:
demo3:
# ModuleList类
net = nn.ModuleList([nn.Linear(784, 256), nn.ReLU()])
net.append(nn.Linear(256, 10)) # # 类似List的append操作
print(net[-1]) # 类似List的索引访问
print(net)
# net(torch.zeros(1, 784)) # 会报NotImplementedError
out3:
Linear(in_features=256, out_features=10, bias=True)
ModuleList(
(0): Linear(in_features=784, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=10, bias=True)
)
既然Sequential和ModuleList都可以进行列表化构造网络,那二者区别是什么呢。
ModuleList仅仅是一个储存各种模块的列表,这些模块之间没有联系也没有顺序(所以不用保证相邻层的输入输出维度匹配),而且没有实现forward功能需要自己实现,所以上面执行net(torch.zeros(1, 784))
会报NotImplementedError
;而Sequential内的模块需要按照顺序排列,要保证相邻层的输入输出大小相匹配,内部forward功能已经实现。
1.2.3 ModuleDict类
ModuleDict接收一个子模块的字典作为输入, 然后也可以类似字典那样进行添加访问操作:
demo4:
# ModuleDict类
net = nn.ModuleDict({
'linear': nn.Linear(784, 256),
'act': nn.ReLU(),
})
net['output'] = nn.Linear(256, 10) # 添加
print(net['linear']) # 访问
print(net.output)
print(net)
# net(torch.zeros(1, 784)) # 会报NotImplementedError
out4:
Linear(in_features=784, out_features=256, bias=True)
Linear(in_features=256, out_features=10, bias=True)
ModuleDict(
(linear): Linear(in_features=784