区间最大公约数

题目

题面要求两个操作

  • 区间加
  • 求区间的最大公约数

结论

g c d ( a 1 , a 2 , . . . , a n ) = g c d ( a 1 , b 2 , . . . , b n ) gcd(a_1,a_2,...,a_n) = gcd(a_1,b_2,...,b_n) gcd(a1,a2,...,an)=gcd(a1,b2,...,bn)

b 1 = a 1 , b i = a i − a i − 1 , i ≥ 2 b_1=a_1,b_i=a_i-a_{i-1},i≥2 b1=a1,bi=aiai1,i2

b b b a a a的差分数组

思路

因为要求区间的一个最大公约数;

如果涉及区间加的话,我们不好维护;

如果能转化为单点修改,那么这个公约数可以从最底层迭代的求上来;

因此我们考虑差分;

假设
b 1 = a 1 , b i = a i − a i − 1 , i ≥ 2 b_1=a_1,b_i=a_i-a_{i-1},i≥2 b1=a1,bi=aiai1,i2
g c d ( a 1 , a 2 , . . . , a n ) = g c d ( a 1 , b 2 , . . . , b n ) gcd(a_1,a_2,...,a_n) = gcd(a_1,b_2,...,b_n) gcd(a1,a2,...,an)=gcd(a1,b2,...,bn)

证明

先证
g c d ( a 1 , a 2 , . . . , a n ) ≤ g c d ( a 1 , b 2 , . . . , b n ) gcd(a_1,a_2,...,a_n) ≤ gcd(a_1,b_2,...,b_n) gcd(a1,a2,...,an)gcd(a1,b2,...,bn)

因为右边是由左边做差(线性运算)得到的,因此左边的gcd必然是右边的一个公约数,不一定最大,因此右边必然≥左边;

再证
g c d ( a 1 , a 2 , . . . , a n ) ≥ g c d ( a 1 , b 2 , . . . , b n ) gcd(a_1,a_2,...,a_n) ≥ gcd(a_1,b_2,...,b_n) gcd(a1,a2,...,an)gcd(a1,b2,...,bn)

显然右边的gcd可以整除 a 1 a_1 a1,那么看看 a 2 a_2 a2

a 2 = b 2 + a 1 a_2=b_2+a_1 a2=b2+a1,也就是左边都可以由右边线性运算得到;

因此右边的gcd必然是左边的一个公约数,不一定最大,因此左边必然≥右边;

因此
g c d ( a 1 , a 2 , . . . , a n ) = g c d ( a 1 , b 2 , . . . , b n ) gcd(a_1,a_2,...,a_n) = gcd(a_1,b_2,...,b_n) gcd(a1,a2,...,an)=gcd(a1,b2,...,bn)


那么要求 [ L , R ] [L,R] [L,R] g c d gcd gcd的话,我们需要用到上面的式子;

因此求 g c d ( a L , g c d ( [ b L + 1 , b R ] ) ) gcd(a_L,gcd([b_{L+1},b_R])) gcd(aL,gcd([bL+1,bR]))即可

a L a_L aL也就是差分数组求和;

Code

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

#define lc (p<<1)
#define rc (p<<1|1)

using namespace std;

typedef long long LL;

const int N = 500010;

int n, m;
LL w[N];
struct Node
{
    int l, r;
    LL sum, d;//d是gcd
}tr[N<<2];

LL gcd(LL a, LL b)
{
    return b ? gcd(b, a % b) : a;
}

Node node_merge(Node left,Node right){
    Node ret;
    ret.l = left.l,ret.r = right.r;
    ret.sum = left.sum + right.sum;
    ret.d = gcd(left.d,right.d);
    return ret;
}

void push_up(int p){
    tr[p] = node_merge(tr[lc],tr[rc]);
}

void build(int p, int l, int r)
{
    tr[p].l = l,tr[p].r = r;
    if (l == r)
    {
        LL b = w[r] - w[r - 1];
        tr[p].sum = tr[p].d = b;
        return;
    }
    int mid = (l + r) >> 1;
    build(lc, l, mid), build(rc, mid + 1, r);
    push_up(p);
}
Node query(int p,int l,int r){
    if(tr[p].l>=l&&tr[p].r<=r){
        return tr[p];
    }
    int mid = (tr[p].l+tr[p].r) >> 1;
    if(r<=mid){
        return query(lc,l,r);
    }else if(l > mid) return query(rc,l,r);
    else{
        return node_merge(
            query(lc,l,mid),query(rc,mid+1,r)
            );
    }
}
void node_update(int p,int x,LL u){
    if(tr[p].l == tr[p].r){
        LL tmp = tr[p].sum + u;
        tr[p].sum = tr[p].d = tmp;
        return;
    }
    int mid = (tr[p].l + tr[p].r) >> 1;
    if(x>mid){
        node_update(rc,x,u);
    }else{
        node_update(lc,x,u);
    }
    push_up(p);
}
LL _abs(LL x){
    
    return x>=0?x:-x;
}
int main()
{
    std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
    int n,m;
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ ) cin >> w[i];
    build(1, 1, n);

    int l, r;
    LL d;
    char op;
    while (m -- )
    {
        cin >> op >> l >> r;
        if (op == 'Q')
        {
            auto left = query(1, 1, l);
            Node right;
            if (l + 1 <= r) right = query(1, l + 1, r);
            cout << _abs(gcd(left.sum, right.d)) << '\n';
        }
        else
        {
            cin >> d;
            node_update(1, l, d);
            if (r + 1 <= n) node_update(1, r + 1, -d);
        }
    }

    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
我们可以使用线段树来解决这个问题。对于每个区间,我们都可以预处理出其内部所有数的最大公约数,然后在询问时,查询覆盖该询问区间的所有区间最大公约数并取最大值即可。 具体地,我们可以将二维区间 $(i,j)$ 分别看作 $i$ 和 $j$ 两个维度,建立一颗二维线段树。对于每个节点 $(x,y)$,它表示的区间为 $[l_x,r_x]\times[l_y,r_y]$,其中 $l_x,r_x,l_y,r_y$ 分别表示该节点在 $x$ 和 $y$ 维度上的左右边界。我们可以在每个节点上维护一个值 $g_{x,y}$,表示区间 $[l_x,r_x]\times[l_y,r_y]$ 内部所有数的最大公约数。 对于每个节点 $(x,y)$,我们可以通过递归地计算其左右儿子节点的 $g$ 值来求出该节点的 $g$ 值。具体地,我们可以将节点 $(x,y)$ 表示的区间分成四个子区间,分别为 $[l_x,\lfloor\frac{l_x+r_x}{2}\rfloor]\times[l_y,\lfloor\frac{l_y+r_y}{2}\rfloor]$、$[\lfloor\frac{l_x+r_x}{2}\rfloor+1,r_x]\times[l_y,\lfloor\frac{l_y+r_y}{2}\rfloor]$、$[l_x,\lfloor\frac{l_x+r_x}{2}\rfloor]\times[\lfloor\frac{l_y+r_y}{2}\rfloor+1,r_y]$ 和 $[\lfloor\frac{l_x+r_x}{2}\rfloor+1,r_x]\times[\lfloor\frac{l_y+r_y}{2}\rfloor+1,r_y]$。然后我们可以递归地计算出这四个子区间的 $g$ 值,然后将它们合并起来得到该节点的 $g$ 值。合并方法为取四个子区间的 $g$ 值的最大公约数。 查询时,我们从根节点开始,递归地查找覆盖询问区间的节点,并将这些节点的 $g$ 值取最大值。具体地,对于当前节点 $(x,y)$,如果它表示的区间与询问区间不相交,则直接返回 1。否则,如果它表示的区间完全包含询问区间,则返回该节点的 $g$ 值。否则,我们将询问区间分成四个子区间,并递归地查询每个子区间,然后将它们的 $g$ 值取最大公约数作为当前节点的 $g$ 值返回。 时间复杂度为 $O((n+m)\log^2(n+m))$,其中 $n$ 和 $m$ 分别为二维区间的行数和列数。空间复杂度为 $O((n+m)\log^2(n+m))$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值