文章目录
1. 正项级数及其审敛法
1.1. 正项级数
1.1.1. 定义
- 各项都是正数或零的级数。
- 这种级数特别重要,许多级数的收敛性问题可归结为正项级数的收敛性问题。
- 定理1:正项级数收敛的充要条件是:它的部分和数列有界。
1.1.2. 比较审敛法
- 设 ∑ n = 1 ∞ u n 和 ∑ n = 1 ∞ v n \sum_{n=1}^{\infin}u_n和\sum_{n=1}^{\infin}v_n n=1∑∞un和n=1∑∞vn都是正项级数,且 u n ≤ v n , n = 1 , 2 , . . . u_n \le v_n,n=1,2,... un≤vn,n=1,2,...。若级数 ∑ n = 1 ∞ v n \sum_{n=1}^{\infin}v_n n=1∑∞vn收敛,则级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infin}u_n n=1∑∞un收敛;反之,若级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infin}u_n n=1∑∞un发散,则级数 ∑ n = 1 ∞ v n \sum_{n=1}^{\infin}v_n n=1∑∞vn发散。
- 级数的每一项同乘不为零的常数 k k k以及去掉级数前面部分的有限项不会影响级数的收敛性,因而只要存在正整数 N N N,使当 n ≥ N n \ge N n≥N时有 u n ≤ k v n ( k > 0 ) u_n \le kv_n(k>0) un≤kvn(k>0)即可。
1.2. p级数
1.2.1. 定义
∑ n = 1 ∞ 1 n p = 1 + 1 2 p + . . . + 1 n p + . . . ( p > 0 ) \sum_{n=1}^{\infin}\frac{1}{n^p}=1+\frac{1}{2^p}+...+\frac{1}{n^p}+...(p>0) n=1∑∞np1=1+2p1+...+np1+...(p>0)
1.2.2. 收敛性
- 当 p ≤ 1 p \le 1 p≤1时, 1 n p ≥ 1 n \dfrac{1}{n^p} \ge \dfrac{1}{n} np1≥n1,但调和级数发散,因此此时 p p p级数发散。
- 当
p
>
1
p > 1
p>1时,因为当
k
−
1
≤
x
≤
k
k-1 \le x \le k
k−1≤x≤k时,有
1
k
p
≤
1
x
p
\dfrac{1}{k^p} \le \dfrac{1}{x^p}
kp1≤xp1,所以
1
k
p
=
∫
k
−
1
k
1
k
p
d
x
≤
∫
k
−
1
k
1
x
p
d
x
(
k
=
2
,
3
,
.
.
.
)
,
\frac{1}{k^p}=\int^k_{k-1}\frac{1}{k^p}dx \le \int^k_{k-1}\frac{1}{x^p}dx(k=2,3,...),
kp1=∫k−1kkp1dx≤∫k−1kxp1dx(k=2,3,...),从而级数的部分和
s n = 1 + ∑ k = 2 n 1 k p ≤ 1 + ∑ k = 2 ∞ ∫ k − 1 k 1 x p d x = 1 + ∫ 1 n 1 x p d x = 1 + 1 p − 1 ( 1 − 1 n p − 1 ) < 1 + 1 p − 1 ( n = 2 , 3 , . . . ) \begin{aligned} s_n&=1+\sum_{k=2}^{n}\frac{1}{k^p} \le 1+\sum_{k=2}^{\infin}\int^k_{k-1}\frac{1}{x^p}dx\\ &=1+\int^n_1\frac{1}{x^p}dx\\ &=1+\frac{1}{p-1}(1-\frac{1}{n^{p-1}})<1+\frac{1}{p-1}(n=2,3,...) \end{aligned} sn=1+k=2∑nkp1≤1+k=2∑∞∫k−1kxp1dx=1+∫1nxp1dx=1+p−11(1−np−11)<1+p−11(n=2,3,...)
这表明数列 { s n } \{s_n\} {sn}有界,因此级数收敛。 - 综上所述, p p p级数当 p > 1 p>1 p>1时收敛,当 p ≤ 1 p \le 1 p≤1时发散。
1.3. 比较审敛法的极限形式
1.3.1. 定理
- 设 ∑ n = 1 ∞ u n 和 ∑ n = 1 ∞ v n \sum_{n=1}^{\infin}u_n和\sum_{n=1}^{\infin}v_n n=1∑∞un和n=1∑∞vn都是正项级数。
- (1) 如果 lim n → ∞ u n v n = l ( 0 ≤ l < + ∞ ) , \lim_{n\rightarrow\infin}\frac{u_n}{v_n}=l(0\le l < +\infin), n→∞limvnun=l(0≤l<+∞),且 ∑ n = 1 ∞ v n \sum_{n=1}^{\infin}v_n n=1∑∞vn收敛,那么级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infin}u_n n=1∑∞un收敛。
- (2) 如果 lim n → ∞ u n v n = l > 0 , 或 lim n → ∞ u n v n = + ∞ \lim_{n\rightarrow\infin}\frac{u_n}{v_n}=l>0,或\lim_{n\rightarrow\infin}\frac{u_n}{v_n}=+\infin n→∞limvnun=l>0,或n→∞limvnun=+∞且 ∑ n = 1 ∞ v n \sum_{n=1}^{\infin}v_n n=1∑∞vn发散,那么级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infin}u_n n=1∑∞un发散。
- 极限形式的比较审敛法表明,当 n → ∞ n\rightarrow\infin n→∞时,如果 u n u_n un是与 v n v_n vn同阶或比 v n v_n vn高阶的无穷小,而级数 ∑ n = 1 ∞ v n \sum_{n=1}^{\infin}v_n n=1∑∞vn收敛,那么级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infin}u_n n=1∑∞un收敛;如果 u n u_n un是与 v n v_n vn同阶或比 v n v_n vn低阶的无穷小,而级数 ∑ n = 1 ∞ v n \sum_{n=1}^{\infin}v_n n=1∑∞vn发散,那么级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infin}u_n n=1∑∞un发散。
- 将所给的正项级数与等比级数比较,就能得到在实用上很方便的比值审敛法和根值审敛法;将所给的正项级数与 p p p级数比较,就能得到在实用上很方便的极限审敛法。
1.3.2. 比值审敛法
- 又叫达朗贝尔判别法。
- 设 ∑ n = 1 ∞ u n \sum_{n=1}^{\infin}u_n n=1∑∞un为正项级数,如果 lim n → ∞ u n + 1 u n = ρ , \lim_{n\rightarrow\infin}\frac{u_{n+1}}{u_n}=\rho, n→∞limunun+1=ρ,那么当 ρ < 1 \rho<1 ρ<1时级数收敛, ρ > 1 \rho>1 ρ>1(或 lim n → ∞ u n + 1 u n = ∞ \lim_{n\rightarrow\infin}\frac{u_{n+1}}{u_n}=\infin n→∞limunun+1=∞)时级数发散, ρ = 1 \rho=1 ρ=1时级数可能收敛也可能发散。
1.3.3. 根值审敛法
- 又叫柯西判别法
- 设 ∑ n = 1 ∞ u n \sum_{n=1}^{\infin}u_n n=1∑∞un为正项级数,如果 lim n → ∞ u n n = ρ , \lim_{n\rightarrow\infin}\sqrt[n]{u_n}=\rho, n→∞limnun=ρ,那么当 ρ < 1 \rho<1 ρ<1时级数收敛, ρ > 1 \rho>1 ρ>1(或 lim n → ∞ u n + 1 u n = ∞ \lim_{n\rightarrow\infin}\frac{u_{n+1}}{u_n}=\infin n→∞limunun+1=∞)时级数发散, ρ = 1 \rho=1 ρ=1时级数可能收敛也可能发散。
1.3.4. 极限审敛法
- 设 ∑ n = 1 ∞ u n \sum_{n=1}^{\infin}u_n n=1∑∞un为正项级数
- (1) 如果 lim n → ∞ n u n = l > 0 ( 或 + ∞ ) \lim_{n\rightarrow\infin}nu_n=l>0(或+\infin) n→∞limnun=l>0(或+∞),那么级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infin}u_n n=1∑∞un发散;
- (2) 如果 p > 1 p>1 p>1,而 lim n → ∞ n p u n = l ( 0 ≤ l < + ∞ ) \lim_{n\rightarrow\infin}n^pu_n=l(0\le l <+\infin) n→∞limnpun=l(0≤l<+∞),那么级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infin}u_n n=1∑∞un收敛。
- 可以结合等价无穷小的相关知识。
2. 交错级数及其审敛法
2.1. 交错级数的定义
- 所谓的交错级数的各项是正负交错的,从而可以写成下面的形式:
u 1 − u 2 + u 3 − u 4 + . . . . , u_1-u_2+u_3-u_4+...., u1−u2+u3−u4+....,或
− u 1 + u 2 − u 3 + u 4 − . . . , -u_1+u_2-u_3+u_4-..., −u1+u2−u3+u4−...,其中 u 1 , u 2 , . . . u_1,u_2,... u1,u2,...都是正数。
2.2. 莱布尼茨定理
- 如果交错级数 ∑ n = 1 ∞ ( − 1 ) n − 1 u n \sum_{n=1}^{\infin}(-1)^{n-1}u_n n=1∑∞(−1)n−1un满足条件:
- (1) u n ≥ u n + 1 ( n = 1 , 2 , 3 , . . . ) ; u_n \ge u_{n+1}(n=1,2,3,...); un≥un+1(n=1,2,3,...);
- (2)
lim
n
→
∞
u
n
=
0
,
\lim_{n\rightarrow\infin}u_n=0,
n→∞limun=0,
那么级数收敛,且其和 s ≤ u 1 s \le u_1 s≤u1,其余项的绝对值 ∣ r n ∣ ≤ u n + 1 |r_n|\le u_{n+1} ∣rn∣≤un+1。
3. 绝对收敛与条件收敛
3.1. 定义
- 现在讨论一般的级数 u 1 + u 2 + . . . + u n + . . . , u_1+u_2+...+u_n+..., u1+u2+...+un+...,它的各项为任意实数。如果级数各项的绝对值所构成的正项级数 ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infin}|u_n| n=1∑∞∣un∣收敛,那么称级数绝对收敛;如果级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infin}u_n n=1∑∞un收敛,而 ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infin}|u_n| n=1∑∞∣un∣发散,那么称级数条件收敛。
3.2. 定理
- 如果级数绝对收敛,那么级数必定收敛。
- 如果用比值审敛法或根值审敛法,判定级数 ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infin}|u_n| n=1∑∞∣un∣发散,那么级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infin}u_n n=1∑∞un必定发散。