【高等数学】第二章 导数与微分——第一节 导数的概念

本文详细介绍了导数的定义、常见公式,如速度-位置关系、导数几何意义及函数连续性与可导性的联系。涵盖了导数的左导数和右导数,以及它们在曲线切线与斜率中的体现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 引例

  • 直线运动的速度
    位置函数 s = f ( t ) s=f(t) s=f(t)
    平均速度 v ‾ = s − s 0 t − t 0 = f ( t ) − f ( t 0 ) t − t 0 \overline{v}=\dfrac{s-s_0}{t-t_0}=\dfrac{f(t)-f(t_0)}{t-t_0} v=tt0ss0=tt0f(t)f(t0)
    瞬时速度 v = lim ⁡ t → t 0 f ( t ) − f ( t 0 ) t − t 0 v=\lim_{t\rightarrow t_0}\frac{f(t)-f(t_0)}{t-t_0} v=tt0limtt0f(t)f(t0)
  • 切线问题
    割线斜率 tan ⁡ ϕ = y − y 0 x − x 0 = f ( x ) − f ( x 0 ) x − x 0 \tan \phi=\dfrac{y-y_0}{x-x_0}=\dfrac{f(x)-f(x_0)}{x-x_0} tanϕ=xx0yy0=xx0f(x)f(x0)
    切线斜率 k = tan ⁡ α = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 k=\tan \alpha=\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0} k=tanα=xx0limxx0f(x)f(x0)

2. 导数的定义

设函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0的某个邻域内有定义,当自变量 x x x x 0 x_0 x0处取得增量 Δ x \Delta x Δx(点 x 0 + Δ x x_0+\Delta x x0+Δx仍在该邻域内)时,相应地,因变量取得增量 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)f(x0)
如果 Δ y \Delta y Δy Δ x \Delta x Δx之比当 Δ x → 0 \Delta x\rightarrow 0 Δx0时的极限存在
那么称函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处可导,并称这个极限为函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处的导数,记为 f ′ ( x 0 ) f'(x_0) f(x0)
f ′ ( x 0 ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_0)=\lim_{\Delta x\rightarrow 0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\rightarrow 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f(x0)=Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)
也可记作 y ′ ∣ x = x 0 , d y d x ∣ x = x 0 或 d f ( x ) d x ∣ x = x 0 y'|_{x=x_0},\frac{dy}{dx}|_{x=x_0}或\frac{df(x)}{dx}|_{x=x_0} yx=x0,dxdyx=x0dxdf(x)x=x0
函数 f ( x ) f(x) f(x) x 0 x_0 x0处可导有时也说成 f ( x ) f(x) f(x)在点 x 0 x_0 x0具有导数或导数存在

  • 导数的定义式也可取其他的形式,常见的有 f ′ ( x 0 ) = lim ⁡ h → 0 f ( x 0 + h ) − f ( x 0 ) h ( h = Δ x ) f'(x_0)=\lim_{h\rightarrow 0}\frac{f(x_0+h)-f(x_0)}{h}(h=\Delta x) f(x0)=h0limhf(x0+h)f(x0)(h=Δx) f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_0)=\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0} f(x0)=xx0limxx0f(x)f(x0)
  • 因变量增量与自变量增量之比是因变量 y y y在以 x 0 x_0 x0 x 0 + Δ x x_0+\Delta x x0+Δx为端点的区间上的平均变化率,而导数 f ′ ( x 0 ) f'(x_0) f(x0)则是因变量 y y y在点 x 0 x_0 x0处的瞬时变化率,它反映了因变量随自变量的变化而变化的快慢程度
  • 如果导数定义式中的极限不存在,就说函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0不可导,如果不可导的原因是极限值为无穷大,为了方便起见,也往往说函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处的导数为无穷大
  • 导函数
    如果函数 f ( x ) f(x) f(x)在开区间 I I I内的每点处都可导
    则称函数 f ( x ) f(x) f(x)在开区间 I I I内可导
    对于任一 x ∈ I x\in I xI,都对应着 f ( x ) f(x) f(x)一个确定的导数值,这样就构成了导函数,记作 f ′ ( x ) , d y d x 或 d f ( x ) d x f'(x),\dfrac{dy}{dx}或\dfrac{df(x)}{dx} f(x),dxdydxdf(x)
    • f ′ ( x 0 ) = f ′ ( x ) ∣ x = x 0 f'(x_0)=f'(x)|_{x=x_0} f(x0)=f(x)x=x0
      导函数简称导数,而 f ′ ( x 0 ) f'(x_0) f(x0) f ( x ) f(x) f(x) x 0 x_0 x0的导数或导数 f ′ ( x ) f'(x) f(x) x 0 x_0 x0处的值

3. 常用导数公式

  • ( C ) ′ = 0 (C)'=0 (C)=0
  • ( x μ ) ′ = μ x μ − 1 (x^\mu)'=\mu x^{\mu-1} (xμ)=μxμ1
    • ( x ) ′ = ( x 1 2 ) ′ = 1 2 x (\sqrt x)'=(x^{\frac{1}{2}})'=\dfrac{1}{2\sqrt x} (x )=(x21)=2x 1
    • ( 1 x ) ′ = ( x − 1 ) ′ = − 1 x 2 (\dfrac{1}{x})'=(x^{-1})'=-\dfrac{1}{x^2} (x1)=(x1)=x21
  • ( sin ⁡ x ) ′ = cos ⁡ x (\sin x)'=\cos x (sinx)=cosx
  • ( cos ⁡ x ) ′ = − sin ⁡ x (\cos x)'=-\sin x (cosx)=sinx
  • ( a x ) ′ = a x ln ⁡ a (a^x)'=a^x\ln a (ax)=axlna
    • ( e x ) ′ = e x (e^x)'=e^x (ex)=ex
  • ( log ⁡ a x ) ′ = 1 x ln ⁡ a (\log_ax)'=\dfrac{1}{x\ln a} (logax)=xlna1
    • ( ln ⁡ x ) ′ = 1 x (\ln x)'=\dfrac{1}{x} (lnx)=x1

4. 单侧导数

导数对应的左、右极限 lim ⁡ h → 0 − f ( x 0 + h ) − f ( x 0 ) h \lim_{h\rightarrow 0^-}\frac{f(x_0+h)-f(x_0)}{h} h0limhf(x0+h)f(x0) lim ⁡ h → 0 + f ( x 0 + h ) − f ( x 0 ) h \lim_{h\rightarrow 0^+}\frac{f(x_0+h)-f(x_0)}{h} h0+limhf(x0+h)f(x0)分别称为函数 f ( x ) f(x) f(x) x 0 x_0 x0处的左导数右导数,记作 f − ′ ( x 0 ) f'_-(x_0) f(x0) f + ′ ( x 0 ) f'_+(x_0) f+(x0),即 f − ′ ( x 0 ) = lim ⁡ h → 0 − f ( x 0 + h ) − f ( x 0 ) h f + ′ ( x 0 ) = lim ⁡ h → 0 + f ( x 0 + h ) − f ( x 0 ) h f'_-(x_0)=\lim_{h\rightarrow 0^-}\frac{f(x_0+h)-f(x_0)}{h}\\ f'_+(x_0)=\lim_{h\rightarrow 0^+}\frac{f(x_0+h)-f(x_0)}{h} f(x0)=h0limhf(x0+h)f(x0)f+(x0)=h0+limhf(x0+h)f(x0)

  • 函数 f ( x ) f(x) f(x) x 0 x_0 x0处可导的充分必要条件是左导数 f − ′ ( x 0 ) f'_-(x_0) f(x0)和右导数 f + ′ ( x 0 ) f'_+(x_0) f+(x0)都存在且相等
  • 左导数和右导数统称单侧导数
  • 如果函数 f ( x ) f(x) f(x)在开区间 ( a , b ) (a,b) (a,b)内可导,且 f − ′ ( x 0 ) f'_-(x_0) f(x0) f + ′ ( x 0 ) f'_+(x_0) f+(x0)都存在,那么就说 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上可导

5. 导数的几何意义

函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处的导数 f ′ ( x 0 ) f'(x_0) f(x0)在几何上表示曲线 y = f ( x ) y=f(x) y=f(x)在点 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))处的切线的斜率,即 f ′ ( x 0 ) = tan ⁡ α f'(x_0)=\tan \alpha f(x0)=tanα其中 α \alpha α是切线的倾角

  • f ( x ) f(x) f(x)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的切线方程为 y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y-y_0=f'(x_0)(x-x_0) yy0=f(x0)(xx0)
  • f ( x ) f(x) f(x)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的法线方程为 y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) ( f ′ ( x 0 ) ≠ 0 ) y-y_0=-\frac{1}{f'(x_0)}(x-x_0)(f'(x_0)\ne 0) yy0=f(x0)1(xx0)(f(x0)=0)

6. 函数可导性与连续性的关系

  • 可导一定连续
    如果函数 f ( x ) f(x) f(x)在点 x x x处可导,那么函数在该点必连续
  • 连续不一定可导
    反例—— y = ∣ x ∣ y=|x| y=x y = x 3 y=\sqrt[3]{x} y=3x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值