1. 引例
- 直线运动的速度
位置函数 s = f ( t ) s=f(t) s=f(t)
平均速度 v ‾ = s − s 0 t − t 0 = f ( t ) − f ( t 0 ) t − t 0 \overline{v}=\dfrac{s-s_0}{t-t_0}=\dfrac{f(t)-f(t_0)}{t-t_0} v=t−t0s−s0=t−t0f(t)−f(t0)
瞬时速度 v = lim t → t 0 f ( t ) − f ( t 0 ) t − t 0 v=\lim_{t\rightarrow t_0}\frac{f(t)-f(t_0)}{t-t_0} v=t→t0limt−t0f(t)−f(t0) - 切线问题
割线斜率 tan ϕ = y − y 0 x − x 0 = f ( x ) − f ( x 0 ) x − x 0 \tan \phi=\dfrac{y-y_0}{x-x_0}=\dfrac{f(x)-f(x_0)}{x-x_0} tanϕ=x−x0y−y0=x−x0f(x)−f(x0)
切线斜率 k = tan α = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 k=\tan \alpha=\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0} k=tanα=x→x0limx−x0f(x)−f(x0)
2. 导数的定义
设函数
y
=
f
(
x
)
y=f(x)
y=f(x)在点
x
0
x_0
x0的某个邻域内有定义,当自变量
x
x
x在
x
0
x_0
x0处取得增量
Δ
x
\Delta x
Δx(点
x
0
+
Δ
x
x_0+\Delta x
x0+Δx仍在该邻域内)时,相应地,因变量取得增量
Δ
y
=
f
(
x
0
+
Δ
x
)
−
f
(
x
0
)
\Delta y=f(x_0+\Delta x)-f(x_0)
Δy=f(x0+Δx)−f(x0)
如果
Δ
y
\Delta y
Δy与
Δ
x
\Delta x
Δx之比当
Δ
x
→
0
\Delta x\rightarrow 0
Δx→0时的极限存在
那么称函数
y
=
f
(
x
)
y=f(x)
y=f(x)在点
x
0
x_0
x0处可导,并称这个极限为函数
y
=
f
(
x
)
y=f(x)
y=f(x)在点
x
0
x_0
x0处的导数,记为
f
′
(
x
0
)
f'(x_0)
f′(x0)
即
f
′
(
x
0
)
=
lim
Δ
x
→
0
Δ
y
Δ
x
=
lim
Δ
x
→
0
f
(
x
0
+
Δ
x
)
−
f
(
x
0
)
Δ
x
f'(x_0)=\lim_{\Delta x\rightarrow 0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\rightarrow 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}
f′(x0)=Δx→0limΔxΔy=Δx→0limΔxf(x0+Δx)−f(x0)
也可记作
y
′
∣
x
=
x
0
,
d
y
d
x
∣
x
=
x
0
或
d
f
(
x
)
d
x
∣
x
=
x
0
y'|_{x=x_0},\frac{dy}{dx}|_{x=x_0}或\frac{df(x)}{dx}|_{x=x_0}
y′∣x=x0,dxdy∣x=x0或dxdf(x)∣x=x0
函数
f
(
x
)
f(x)
f(x)在
x
0
x_0
x0处可导有时也说成
f
(
x
)
f(x)
f(x)在点
x
0
x_0
x0具有导数或导数存在
- 导数的定义式也可取其他的形式,常见的有 f ′ ( x 0 ) = lim h → 0 f ( x 0 + h ) − f ( x 0 ) h ( h = Δ x ) f'(x_0)=\lim_{h\rightarrow 0}\frac{f(x_0+h)-f(x_0)}{h}(h=\Delta x) f′(x0)=h→0limhf(x0+h)−f(x0)(h=Δx)和 f ′ ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_0)=\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0} f′(x0)=x→x0limx−x0f(x)−f(x0)
- 因变量增量与自变量增量之比是因变量 y y y在以 x 0 x_0 x0和 x 0 + Δ x x_0+\Delta x x0+Δx为端点的区间上的平均变化率,而导数 f ′ ( x 0 ) f'(x_0) f′(x0)则是因变量 y y y在点 x 0 x_0 x0处的瞬时变化率,它反映了因变量随自变量的变化而变化的快慢程度
- 如果导数定义式中的极限不存在,就说函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处不可导,如果不可导的原因是极限值为无穷大,为了方便起见,也往往说函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处的导数为无穷大
- 导函数
如果函数 f ( x ) f(x) f(x)在开区间 I I I内的每点处都可导
则称函数 f ( x ) f(x) f(x)在开区间 I I I内可导
对于任一 x ∈ I x\in I x∈I,都对应着 f ( x ) f(x) f(x)一个确定的导数值,这样就构成了导函数,记作 f ′ ( x ) , d y d x 或 d f ( x ) d x f'(x),\dfrac{dy}{dx}或\dfrac{df(x)}{dx} f′(x),dxdy或dxdf(x)-
f
′
(
x
0
)
=
f
′
(
x
)
∣
x
=
x
0
f'(x_0)=f'(x)|_{x=x_0}
f′(x0)=f′(x)∣x=x0
导函数简称导数,而 f ′ ( x 0 ) f'(x_0) f′(x0)是 f ( x ) f(x) f(x)在 x 0 x_0 x0的导数或导数 f ′ ( x ) f'(x) f′(x)在 x 0 x_0 x0处的值
-
f
′
(
x
0
)
=
f
′
(
x
)
∣
x
=
x
0
f'(x_0)=f'(x)|_{x=x_0}
f′(x0)=f′(x)∣x=x0
3. 常用导数公式
- ( C ) ′ = 0 (C)'=0 (C)′=0
-
(
x
μ
)
′
=
μ
x
μ
−
1
(x^\mu)'=\mu x^{\mu-1}
(xμ)′=μxμ−1
- ( x ) ′ = ( x 1 2 ) ′ = 1 2 x (\sqrt x)'=(x^{\frac{1}{2}})'=\dfrac{1}{2\sqrt x} (x)′=(x21)′=2x1
- ( 1 x ) ′ = ( x − 1 ) ′ = − 1 x 2 (\dfrac{1}{x})'=(x^{-1})'=-\dfrac{1}{x^2} (x1)′=(x−1)′=−x21
- ( sin x ) ′ = cos x (\sin x)'=\cos x (sinx)′=cosx
- ( cos x ) ′ = − sin x (\cos x)'=-\sin x (cosx)′=−sinx
-
(
a
x
)
′
=
a
x
ln
a
(a^x)'=a^x\ln a
(ax)′=axlna
- ( e x ) ′ = e x (e^x)'=e^x (ex)′=ex
-
(
log
a
x
)
′
=
1
x
ln
a
(\log_ax)'=\dfrac{1}{x\ln a}
(logax)′=xlna1
- ( ln x ) ′ = 1 x (\ln x)'=\dfrac{1}{x} (lnx)′=x1
4. 单侧导数
导数对应的左、右极限 lim h → 0 − f ( x 0 + h ) − f ( x 0 ) h \lim_{h\rightarrow 0^-}\frac{f(x_0+h)-f(x_0)}{h} h→0−limhf(x0+h)−f(x0)和 lim h → 0 + f ( x 0 + h ) − f ( x 0 ) h \lim_{h\rightarrow 0^+}\frac{f(x_0+h)-f(x_0)}{h} h→0+limhf(x0+h)−f(x0)分别称为函数 f ( x ) f(x) f(x)在 x 0 x_0 x0处的左导数和右导数,记作 f − ′ ( x 0 ) f'_-(x_0) f−′(x0)和 f + ′ ( x 0 ) f'_+(x_0) f+′(x0),即 f − ′ ( x 0 ) = lim h → 0 − f ( x 0 + h ) − f ( x 0 ) h f + ′ ( x 0 ) = lim h → 0 + f ( x 0 + h ) − f ( x 0 ) h f'_-(x_0)=\lim_{h\rightarrow 0^-}\frac{f(x_0+h)-f(x_0)}{h}\\ f'_+(x_0)=\lim_{h\rightarrow 0^+}\frac{f(x_0+h)-f(x_0)}{h} f−′(x0)=h→0−limhf(x0+h)−f(x0)f+′(x0)=h→0+limhf(x0+h)−f(x0)
- 函数 f ( x ) f(x) f(x)在 x 0 x_0 x0处可导的充分必要条件是左导数 f − ′ ( x 0 ) f'_-(x_0) f−′(x0)和右导数 f + ′ ( x 0 ) f'_+(x_0) f+′(x0)都存在且相等
- 左导数和右导数统称单侧导数
- 如果函数 f ( x ) f(x) f(x)在开区间 ( a , b ) (a,b) (a,b)内可导,且 f − ′ ( x 0 ) f'_-(x_0) f−′(x0)和 f + ′ ( x 0 ) f'_+(x_0) f+′(x0)都存在,那么就说 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上可导
5. 导数的几何意义
函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处的导数 f ′ ( x 0 ) f'(x_0) f′(x0)在几何上表示曲线 y = f ( x ) y=f(x) y=f(x)在点 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))处的切线的斜率,即 f ′ ( x 0 ) = tan α f'(x_0)=\tan \alpha f′(x0)=tanα其中 α \alpha α是切线的倾角
- f ( x ) f(x) f(x)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的切线方程为 y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y-y_0=f'(x_0)(x-x_0) y−y0=f′(x0)(x−x0)
- f ( x ) f(x) f(x)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的法线方程为 y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) ( f ′ ( x 0 ) ≠ 0 ) y-y_0=-\frac{1}{f'(x_0)}(x-x_0)(f'(x_0)\ne 0) y−y0=−f′(x0)1(x−x0)(f′(x0)=0)
6. 函数可导性与连续性的关系
- 可导一定连续
如果函数 f ( x ) f(x) f(x)在点 x x x处可导,那么函数在该点必连续 - 连续不一定可导
反例—— y = ∣ x ∣ y=|x| y=∣x∣和 y = x 3 y=\sqrt[3]{x} y=3x