c++《AVL树的概念》《AVL树的插入》《AVL树的旋转》《AVL树的验证》《AVL树的删除》《AVL树的性能》

4.1 AVL树
4.1.1 AVL树的概念
二叉搜索树虽可以缩短查找的效率,**但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当 于在顺序表中搜索元素,效率低下。**因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年 发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之 差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
它的左右子树都是AVL树
它左右树高度之差(简称平衡因子)的绝对值不超过1(-1,0,1)
在这里插入图片描述
如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 ,搜索时 间复杂度O(logN )
4.1.2 AVL 树的定定义
AVL树节点的定义

tempate<class T>
struct AVLTreeNode
{
    AVL TreeNode(cost T& data)
       :pLeft(nullptr, _pRight(nullptr),_pParent(nullptr)
       ,_data(data),_bf(0)
       {}
       AVLTreeNode<T>*_pLeft;   //该节点的左孩子
       AVLTreeNode<T>*_pRight;  //该节点的右孩子
       AVLTreeNode<T>*_pParent;  //该节点的双亲
       T_data;
       int _bf;                  //该节点的平衡因子
};

4.1.3 AVL树的插入
AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入 过程可以分为两步:
1.按照二叉搜索树的方式插入新节点
2.调整节点的平衡因子
bool Insert(const T& data)
{
// 1. 先按照二叉搜索树的规则将节点插入到AVL树中
// …
// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了 AVL树
// 的平衡性
/*
pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此 时满足
AVL树的性质,插入成功
2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负 1,此
时以pParent为根的树的高度增加,需要继续向上更新
3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转 处理
*/

while (pParent)  
{     
	// 更新双亲的平衡因子
	if (pCur == pParent->_pLeft)    
		pParent->_bf--;    
	else           
		pParent->_bf++;

	// 更新后检测双亲的平衡因子   
	if (0 == pParent->_bf)     
		break;       
	else if (1 == pParent->_bf || -1 == pParent->_bf) 
	{          
		// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲为根的 二叉树         
		// 的高度增加了一层,因此需要继续向上调整 
		pCur = pParent;     
		pParent = pCur->_pParent;
	}
	else      
	{       
		// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent       
		// 为根的树进行旋转处理          
		if(2 == pParent->_bf)             
		{               
			// ...          
		}           
		else
		{
			// ...         
		}    
	}  
}

			return true;

}

4.1.4 AVL树的旋转
如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡 化。根据节点插入位置的不同,AVL树的旋转分为四种:
1.新节点插入较高左子树的左侧----左左:右单旋
在这里插入图片描述
2.新节点插入较高右子树的右侧:左单旋
在这里插入图片描述
新节点插入较高左子树的右侧—左右: 先左单旋再右单旋

在这里插入图片描述
将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因 子的更新。

新节点插入较高右子树的左侧—右左:先右单旋再左单旋

在这里插入图片描述
参考右左双旋。
总结:
假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑

  1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
    当pSubR的平衡因子为1时,执行左单旋
    当pSubR的平衡因子为-1时,执行右左双旋
  2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
    当pSubL的平衡因子为-1是,执行右单旋
    当pSubL的平衡因子为1时,执行左右双旋
    旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

AVL树的验证
AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:
1.验证其为二叉搜索树
如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
2.验证其为平衡树
每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子) 节点的平衡因子是否计算正确

int _Height(PNode pRoot);
bool _IsBalanceTree(PNode pRoot) 
{
	// 空树也是AVL树  
	if (nullptr == pRoot) return true;    
	// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差   
	int leftHeight = _Height(pRoot->_pLeft);   
	int rightHeight = _Height(pRoot->_pRight);  
	int diff = rightHeight - leftHeight;

	// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者  
	// pRoot平衡因子的绝对值超过1,则一定不是AVL树   
	if (diff != pRoot->_bf || (diff > 1 || diff < -1))      
		return false;

	// pRoot的左和右如果都是AVL树,则该树一定是AVL树  
	return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot->_pRight);
}

3.验证用例
动手画AVL树的创建过程
常规场景1 {16, 3, 7, 11, 9, 26, 18, 14, 15}
特殊场景2 {4, 2, 6, 1, 3, 5, 15, 7, 16, 14}

在这里插入图片描述
4.1.6 AVL树的删除
因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不错与删除不 同的时,删除节点后的平衡因子更新,最差情况下一直要调整4,。1.6到根节点的位置。
4.1.7 AVL树的性能
AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证 查询时高效的时间复杂度,即 。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如: 插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。 因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树, 但一个结构经常修改,就不太适合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值