PyTorch安装方法(第2种方法)

PyTorch安装方法(第2种方法)

本文安装的是pytorch1.4版本(cpu版本)

首先需要安装Anaconda

是否需要安装基于cuda的PyTorch版本呢?

对于普通笔记本来说即使有显卡性能也不高,跑不动层数较深的深度学习网络,所以就不用装cuda啦。实际应用时深度学习肯定离不开基于高性能GPU的cuda,作为一般的笔记本,基本都跑不动数据量较大的模型,所以安装CPU版的PyTorch即可。以后如果继续进行深度学习的研究或开发,都会基于高性能服务器,此时安装PyTorch版本肯定是选择有cuda的版本了。

然后进入PyTorch官网https://pytorch.org/,选择相应版本的pytorch(本文安装的是1.4版本的),复制“Run this Command”里面的代码

在这里插入图片描述

然后打开Anaconda Prompt

在这里插入图片描述

运行刚刚在官网复制的命令,如下:

conda install pytorch torchvision cpuonly -c pytorch

系统开始进行安装pytorch

在这里插入图片描述

等到屏幕上出现Proceed([y]/n)?时,输入y

在这里插入图片描述

接下来就开始自动下载安装了:

在这里插入图片描述

测试一下是否安装成功:

首先输入python,回车。接下来继续输入:

//测试:
import torch 
import torchvision
print(torch.__version__)

在这里插入图片描述

PyTorch1.4,cpu版本,就安装成功啦

### 如何在 PyTorch 项目中安装第三方 Python 库 #### 使用 `pip` 安装在线库 对于大多数情况,在线安装是最简便的方式。由于 `pip` 是 Python 的内置命令,可以通过命令行来执行安装操作。打开终端后,可以直接使用 `pip install` 命令加上想要安装的库名称来进行安装[^1]。 ```bash pip install library_name ``` #### 在 Anaconda 环境下安装特定版本的库 当工作在一个由 Anaconda 创建的具体环境下(比如专门配置用于 PyTorch CPU 版本),应当先进入该环境再进行库的安装。这能确保新加入的依赖项不会影响其他项目的正常运作。以管理员权限启动 Anaconda Prompt 后,可通过以下指令激活目标环境并完成指定库的安装[^3]: ```bash conda activate your_env_name pip install -i https://pypi.douban.com/simple library_name ``` 这里的 `-i` 参数指定了一个镜像源地址,可以帮助加速下载过程;而 `your_env_name` 和 `library_name` 则需替换为实际使用的环境名和要安装的库名。 #### 离线环境中安装 `.whl` 文件形式的库 如果处于无法联网的状态,则可提前准备好所需的轮子文件(`.whl`)。这些文件通常可以从互联网上预先获取,并保存到本地磁盘上的某个目录内。接着利用带有选项参数的 `pip install` 来指向这个存储路径即可实现离线状态下的安装[^4]。 ```bash pip install --no-index --find-links=D:\path\to\saved\wheels library_name ``` 或者直接针对单个已知位置的 `.whl` 文件进行安装[^2]: ```bash pip install "D:/Download/library_version_platform.whl" ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值