一、什么是Pandas
pandas 是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的。
Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。
pandas提供了大量能使我们快速便捷地处理数据的函数和方法。
它是使Python成为强大而高效的数据分析环境的重要因素之一。
有关Pandas的更多介绍网站:https://pandas.pydata.org/
二、安装Pandas
豆瓣源快速安装:pip install -i https://pypi.douban.com/simple pands
普通安装:pip install pandas
导入Pandas库,一般都会用到numpy库,所以我们需要一同导入:
import numpy as np
import pandas as pd
三、Pandas基本用法
1.pandas创建Series数据类型
Pandas是一个强大的分析结构化数据的工具集;它的使用基础是Numpy(提供高性能的矩阵运算);用于数据挖掘和数据分析,同时也提供数据清洗功能。
利器之一:Series
类似于一维数组的对象,是由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成。仅由一组数据也可产生简单的Series对象。
利器之二:DataFrame
是Pandas中的一个表格型的数据结构,包含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型等),DataFrame即有行索引也有列索引,可以被看做是由Series组成的字典。
常见的数据类型:
- 一维: Series
- 二维: DataFrame
- 三维: Panel …
- 四维: Panel4D …
- N维: PanelND …
Series是Pandas中的一维数据结构,类似于Python中的列表和Numpy中的Ndarray,不同之处在于:Series是一维的,能存储不同类型的数据,有一组索引与元素对应。
创建Series 数据类型有三种方法:
通过列表创建Series对象
通过numpy的对象Ndarry创建Serise
通过字典创建Series对象;字典的所有key值作为索引,所有的value值作为Series值
import pandas as pd
import numpy as np
import string
# 查看pandas版本信息
print(pd.__version__)
# ********************创建Series对象
# 1). 通过列表创建Series对象
array = ["粉条", "粉丝", "粉带"]
# 如果不指定索引, 默认从0开始;
s1 = pd.Series(data=array)
print(s1)
# 如果不指定索引, 默认从0开始;
ss1 = pd.Series(data=array, index=['A', 'B', 'C'])
print(ss1)
# 2). 通过numpy的对象Ndarray创建Series;
n = np.random.randn(5) # 随机创建一个ndarray对象;
s2 = pd.Series(data=n)
print(s2)
# 修改元素的数据类型;
ss2 = s2.astype(np.int)
print(ss2)
# 3). 通过字典创建Series对象;
dict = {string.ascii_lowercase[i]:i for i in range(10)}
# print(dict)
s3 = pd.Series(dict)
print(s3)
运行结果:
0.23.4
0 粉条
1 粉丝
2 粉带
dtype: object
A 粉条
B 粉丝
C 粉带
dtype: object
0 0.024406
1 -1.819926
2 -0.763840
3 -0.945519
4 -0.763354
dtype: float64
0 0
1 -1
2 0
3 0
4 0
dtype: int32
a 0
b 1
c 2
d 3
e 4
f 5
g 6
h 7
i 8
j 9
dtype: int64
2.Series基本操作
Series 基本操作:
编号 属性或方法 描述
1 axes 返回行轴标签列表。
2 dtype 返回对象的数据类型(dtype)。
3 empty 如果系列为空,则返回True。
4 ndim 返回底层数据的维数,默认定义:1。
5 size 返回基础数据中的元素数。
6 values 将系列作为ndarray返回。
7 head() 返回前n行。
8 tail() 返回最后n行。
例如:
import pandas as pd
import numpy as np
import string
array = ["粉条", "粉丝", "粉带"]
s1 = pd.Series(data=array)
print(s1)
print(s1.axes)
print(s1.dtype)
print(s1.empty)
print(s1.ndim )
print(s1.size)
print(s1.values) #获取所有的value值(不显示索引)
#
# 1). 修改Series索引
print(s1.index)
s1.index = ['A', 'B', 'C']
print(s1)
# 2). Series纵向拼接;
array = ["粉条", "粉丝", "westos"]
# 如果不指定索引, 默认从0开始;
s2 = pd.Series(data=array)
s3 = s1.append(s2)
print(s3)
#
# 3). 删除指定索引对应的元素;
s3 = s3.drop('C') # 删除索引为‘C’对应的值;
print(s3)
# 4). 根据指定的索引查找元素
print(s3['B'])
s3['B'] = np.nan # None, null, pandas数据为空, 或者数据缺失, np.nan
print(s3)
# 5). 切片操作 --- 同列表
print(s3[:2])
print(s3[::-1])
print(s3[-2:]) # 显示最后两个元素
运行结果:
0 粉条
1 粉丝
2 粉带
dtype: object
[RangeIndex(start=0, stop=3, step=1)]
object
False
1
3
['粉条' '粉丝' '粉带']
RangeIndex(start=0, stop=3, step=1)
A 粉条
B 粉丝
C 粉带
dtype: object
A 粉条
B 粉丝
C 粉带
0 粉条
1 粉丝
2 westos
dtype: object
A 粉条
B 粉丝
0 粉条
1 粉丝
2 westos
dtype: object
粉丝
A 粉条
B NaN
0 粉条
1 粉丝
2 westos
dtype: object
A 粉条
B NaN
dtype: object
2 westos
1 粉丝
0 粉条
B NaN
A 粉条
dtype: object
1 粉丝
2 westos
dtype: object
3、Series运算(+ - * /)
import pandas as pd
import numpy as np
s1 = pd.Series(np.arange(5), index=['a', 'b', 'c', 'd', 'e'])
s2 = pd.Series(np.arange(2,8), index=['c', 'd', 'e', 'f', 'g', 'h'])
print(s1)
print(s2)
# 按照对应的索引来进行运算,如果索引不同,则填充为Nan
# 加法, 缺失值 + 真实值 = 缺失值
# print(s1+s2)
print(s1.add(s2))
# 减法
# print(s1 - s2)
print(s1.sub(s2))
# 乘法
# print(s1 * s2)
print(s1.mul(s2))
# 除法
# print(s1 / s2)
print(s1.div(s2))
# 求中位数
print(s1)
print(s1.median())
# 求和
print(s1.sum())
# max
print(s1.max())
# min
print(s1.min())
运行结果:
a 0
b 1
c 2
d 3
e 4
dtype: int64
c 2
d 3
e 4
f 5
g 6
h 7
dtype: int64
a NaN
b NaN
c 4.0
d 6.0
e 8.0
f NaN
g NaN
h NaN
dtype: float64
a NaN
b NaN
c 0.0
d 0.0
e 0.0
f NaN
g NaN
h NaN
dtype: float64
a NaN
b NaN
c 4.0
d 9.0
e 16.0
f NaN
g NaN
h NaN
dtype: float64
a NaN
b NaN
c 1.0
d 1.0
e 1.0
f NaN
g NaN
h NaN
dtype: float64
a 0
b 1
c 2
d 3
e 4
dtype: int64
2.0
10
4
0
4、特殊的where方法
where方法:类似于三元运算符,满足条件不做改变,否则赋值为其他值
import pandas as pd
import numpy as np
import string
# &**********series中的where方法运行结果和numpy中完全不同;
s1 = pd.Series(np.arange(5), index=['a', 'b', 'c', 'd', 'e'])
# 判断s1的value值是否大于3, 如果大于3,值不变, 否则,设置为缺失值
print(s1.where(s1 > 3))
# 对象中不大于3的元素赋值为10;判断s1的value值是否大于3, 如果大于3,值不变, 否则,设置值为10
print(s1.where(s1 > 3, 10))
# 对象中大于3的元素赋值为10;
print(s1.mask(s1 > 3))
print(s1.mask(s1 > 3, 10))
运行结果:
5、创建DataFrame数据类型
Series只有行索引,而DataFrame对象既有行索引,也有列索引
行索引,表明不同行,横向索引,叫index,
列索引,表明不同列,纵向索引,叫columns,
方法有三种:
通过列表创建
通过numpy对象创建
通过字典的方式创建
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
# 方法1: 通过列表创建
li = [
[1, 2, 3, 4],
[2, 3, 4, 5]
]
# DataFRame对象里面包含两个索引, 行索引(0轴, axis=0), 列索引(1轴, axis=1)
d1 = pd.DataFrame(data=li, index=['A', 'B'], columns=['views', 'loves', 'comments', 'tranfers'])
print(d1)
# 方法2: 通过numpy对象创建
# [0 1 2 3 4 5 6 7] ====> [[0 1 2 3], [4 5 6 7]]
narr = np.arange(8).reshape(2, 4)
# DataFRame对象里面包含两个索引, 行索引(0轴, axis=0), 列索引(1轴, axis=1)
d2 = pd.DataFrame(data=narr, index=['A', 'B'], columns=['views', 'loves', 'comments', 'tranfers'])
print(d2)
# 方法三: 通过字典的方式创建;
dict = {
'views': [1, 2, ],
运行结果:
views loves comments tranfers
A 1 2 3 4
B 2 3 4 5
views loves comments tranfers
A 0 1 2 3
B 4 5 6 7
views loves comments
粉条 1 2 3
粉丝 2 3 4
DatetimeIndex(['2019-01-01', '2019-01-02', '2019-01-03', '2019-01-04',
'2019-01-05', '2019-01-06', '2019-01-07', '2019-01-08'],
dtype='datetime64[ns]', freq='D')
DatetimeIndex(['2020-05-10 15:28:16.591580', '2020-05-12 15:28:16.591580',
'2020-05-14 15:28:16.591580', '2020-05-16 15:28:16.591580',
'2020-05-18 15:28:16.591580', '2020-05-20 15:28:16.591580'],
dtype='datetime64[ns]', freq='2D')
A B C D
2020-05-10 15:28:16.591580 -0.836054 -0.067327 1.875740 1.833607
2020-05-12 15:28:16.591580 -0.177480 -1.372123 0.458569 -0.741190
2020-05-14 15:28:16.591580 -0.040522 -0.819632 -0.292013 -1.619735
2020-05-16 15:28:16.591580 -2.423660 1.670951 -0.101030 -0.550243
2020-05-18 15:28:16.591580 -1.045623 -2.250482 0.418338 -0.785946
2020-05-20 15:28:16.591580 -0.199168 1.555307 -0.330309 -0.059888
DatetimeIndex(['2021-01-01', '2021-01-02', '2021-01-03'], dtype='datetime64[ns]', freq='D')
2021-01-01 1
2021-01-02 2
2021-01-03 3
Freq: D, dtype: int64
6、DataFrame基础属性和整体情况查询
1)基础属性
df.shape #行数、列数
df.dtype #列数据类型
df.ndim #数据维度
df.index #行索引
df.columns #列索引
df.values #对象值,二维ndarray数组
2)整体情况查询
df.head(3) #显示头部几行,默认5行
df.tail(3) #显示末尾几行,默认5行
df.info() #相关信息概览:行数、列数、索引、列非空值个数、列类型、内存占用
df.describe() #快速综合统计结果: 计数、均值、标准差、最大值、四分位数、最小值等
需要注意的是:
获取行数据: 不能直接通过行索引获取行数据,需通过切片获取,
DataFrame对象[:1] 获取第一行数据
DataFrame对象[:2] 获取前两行数据
或者通过:
DataFrame对象.iloc[0] 获取第一行数据,
DataFrame对象.loc[‘A’] 获取标签为A的行数据
获取列数据:
DataFrame对象[‘列标签名称’]
DataFrame对象.列标签名称
如:
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
narr = np.arange(8).reshape(2, 4)
# DataFRame对象里面包含两个索引, 行索引(0轴, axis=0), 列索引(1轴, axis=1)
d2 = pd.DataFrame(data=narr, index=['A', 'B'], columns=['views', 'loves', 'comments', 'tranfers'])
print(d2)
# **********************1). 查看基础属性***********************
print(d2.shape) # 获取行数和列数;
print(d2.dtypes) # 列数据类型
print(d2.ndim) # 获取数据的维度
print(d2.index) # 行索引
print(d2.columns) # 列索引
print(d2.values, type(d2.values)) # 对象的值, 二维ndarray数组;
# ******************************2). 数据整体状况的查询*************
print(d2.head(1)) # 显示头部的几行, 默认5行
print(d2.tail(1)) # 显示头部的尾行, 默认5行
print("*" * 10)
# 相关信息的预览: 行数, 列数, 列类型, 内存占用
print("info:", d2.info())
print("统计".center(50, '*'))
# 快速综合用计结果: 计数, 均值, 标准差, 最小值, 1/4位数, 中位数, 3/4位数, 最大值;
print(d2.describe())
# 3). 转置操作
print("d2: \n", d2)
# print("d2 T: \n", d2.transpose())
print("d2 T: \n", d2.T)
print("d2 T: \n", d2.swapaxes(1, 0))
# 4). 按列进行排序
print(d2)
# 按照指定列进行排序, 默认是升序, 如果需要降序显示,设置ascending=False;
print(d2.sort_values(by=["views", 'tranfers'], ascending=False))
# 5). 切片及查询
print(d2)
print(d2[:2]) # 可以实现切片, 但是不能索引;
print('1:\n', d2['views']) # 通过标签查询, 获取单列信息
print('2:\n', d2.views) # 和上面是等价的;
print(d2[['views', 'comments']]) # 通过标签查询多列信息
# 6). 通过类似索引的方式查询;
# - iloc(通过位置进行行数据的获取),
# - loc(t通过标签索引行数据)
# print(d2[0])
# print(d2)
print(d2.iloc[0])
print(d2.iloc[-1])
# print(d2['A']) # 报错
print(d2)
print(d2.loc['A'])
# 7). 更改pandas的值;
d2.loc['A'] = np.nan
print(d2)
print(d2.info())
运行结果:
views loves comments tranfers
A 0 1 2 3
B 4 5 6 7
(2, 4)
views int32
loves int32
comments int32
tranfers int32
dtype: object
2
Index(['A', 'B'], dtype='object')
Index(['views', 'loves', 'comments', 'tranfers'], dtype='object')
[[0 1 2 3]
[4 5 6 7]] <class 'numpy.ndarray'>
views loves comments tranfers
A 0 1 2 3
views loves comments tranfers
B 4 5 6 7
**********
<class 'pandas.core.frame.DataFrame'>
Index: 2 entries, A to B
Data columns (total 4 columns):
views 2 non-null int32
loves 2 non-null int32
comments 2 non-null int32
tranfers 2 non-null int32
dtypes: int32(4)
memory usage: 48.0+ bytes
info: None
************************统计************************
views loves comments tranfers
count 2.000000 2.000000 2.000000 2.000000
mean 2.000000 3.000000 4.000000 5.000000
std 2.828427 2.828427 2.828427 2.828427
min 0.000000 1.000000 2.000000 3.000000
25% 1.000000 2.000000 3.000000 4.000000
50% 2.000000 3.000000 4.000000 5.000000
75% 3.000000 4.000000 5.000000 6.000000
max 4.000000 5.000000 6.000000 7.000000
d2:
views loves comments tranfers
A 0 1 2 3
B 4 5 6 7
d2 T:
A B
views 0 4
loves 1 5
comments 2 6
tranfers 3 7
d2 T:
A B
views 0 4
loves 1 5
comments 2 6
tranfers 3 7
views loves comments tranfers
A 0 1 2 3
B 4 5 6 7
views loves comments tranfers
B 4 5 6 7
A 0 1 2 3
views loves comments tranfers
A 0 1 2 3
B 4 5 6 7
views loves comments tranfers
A 0 1 2 3
B 4 5 6 7
1:
A 0
B 4
Name: views, dtype: int32
2:
A 0
B 4
Name: views, dtype: int32
views comments
A 0 2
B 4 6
views 0
loves 1
comments 2
tranfers 3
Name: A, dtype: int32
views 4
loves 5
comments 6
tranfers 7
Name: B, dtype: int32
views loves comments tranfers
A 0 1 2 3
B 4 5 6 7
views 0
loves 1
comments 2
tranfers 3
Name: A, dtype: int32
views loves comments tranfers
A NaN NaN NaN NaN
B 4.0 5.0 6.0 7.0
<class 'pandas.core.frame.DataFrame'>
Index: 2 entries, A to B
Data columns (total 4 columns):
views 1 non-null float64
loves 1 non-null float64
comments 1 non-null float64
tranfers 1 non-null float64
dtypes: float64(4)
memory usage: 160.0+ bytes
None
7、文件的读取与写入
读csv文件:pd.read_csv()
写入csv文件:df.to_csv()
写入excel文件:df.to_excel()
import os
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
# csv, excel, json........
# 1). csv文件的写入
df = pd.DataFrame(
{'province': ['陕西', '陕西', '四川', '四川', '陕西'],
'city': ['咸阳', '宝鸡', '成都', '成都', '宝鸡'],
'count1': [1, 2, 3, 4, 5],
'count2': [1, 2, 33, 4, 5]
}
)
print(df)
filename = os.path.join('doc', 'csvFile.csv')
"""
index=True/False 是否存储行索引, 一般情况下不存储
mode='w' 文件写入的方式, 默认是'w'(清空原有的文件内容, 再写入), 'a'追加
header=True/False 是否写入头部信息(列索引), 一般情况是需要的
"""
df.to_csv(filename, index=False, mode='a', header=False, sep=' ') # index=False不存储行索引
print("csv文件保存成功")
# # 2). csv文件的读取
# df2 = pd.read_csv('doc/csvFile.csv')
# print(df2)
# 3). excel文件的写入
df.to_excel("doc\excelFile.xlsx", sheet_name="省份统计", index=False)
print("excel文件保存成功")
运行结果:
8、分组和聚合操作之group_by
pandas提供了一个灵活高效的groupby功能,
1). 它使你能以一种自然的方式对数据集进行切片、切块、摘要等操作。
2). 根据一个或多个键(可以是函数、数组或DataFrame列>名)拆分pandas对象。
3). 计算分组摘要统计,如计数、平均值、标准差,或用户自定义函数。
如:
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
df = pd.DataFrame(
{'province': ['陕西', '陕西', '四川', '四川', '陕西'],
'city': ['咸阳', '宝鸡', '成都', '成都', '宝鸡'],
'count1': [1, 2, 3, 4, 5],
'count2': [1, 2, 33, 4, 5]
}
)
# 陕西 咸阳 1
# 宝鸡 1
print(df)
# 根据某一列的key值进行统计分析;
grouped = df['count1'].groupby(df['province'])
print(grouped.describe())
print(grouped.median())
# 根据城市统计分析cpunt1的信息;
grouped = df['count1'].groupby(df['city'])
print(grouped.max())
# 指定多个key值进行分类聚合;
grouped = df['count1'].groupby([df['province'], df['city']])
print(grouped.max())
print(grouped.sum())
print(grouped.count())
# 通过unstack方法, 实现层次化的索引;
print(grouped.max().unstack())
运行结果:
province city count1 count2
0 陕西 咸阳 1 1
1 陕西 宝鸡 2 2
2 四川 成都 3 33
3 四川 成都 4 4
4 陕西 宝鸡 5 5
count mean std min 25% 50% 75% max
province
四川 2.0 3.500000 0.707107 3.0 3.25 3.5 3.75 4.0
陕西 3.0 2.666667 2.081666 1.0 1.50 2.0 3.50 5.0
province
四川 3.5
陕西 2.0
Name: count1, dtype: float64
city
咸阳 1
宝鸡 5
成都 4
Name: count1, dtype: int64
province city
四川 成都 4
陕西 咸阳 1
宝鸡 5
Name: count1, dtype: int64
province city
四川 成都 7
陕西 咸阳 1
宝鸡 7
Name: count1, dtype: int64
province city
四川 成都 2
陕西 咸阳 1
宝鸡 2
Name: count1, dtype: int64
city 咸阳 宝鸡 成都
province
四川 NaN NaN 4.0
陕西 1.0 5.0 NaN
四、案例一(商品数据分析)
文件描述: 每列数据分别代表如下: 订单编号, 订单数量, 商品名称, 商品详细选择项, 商品总价格
需求1:
1). 从文件中读取所有的数据; 如何读取csv文件? to_csv
2). 获取数据中所有的商品名称;如何获取dataframe对象中的某一列信息? df[‘列名’], df.列名称
3). 跟据商品的价格进行排序, 降序, 如何对df对象排序? d2.sort_values(by=[“排序的列名称”], ascending=True)
将价格最高的20件产品信息写入mosthighPrice.xlsx文件中; 如何获取df的前20行并写入文件? df.head(20) df1.to_csv(xxxxxx)
需求2:
1). 统计列[item_name]中每种商品出现的频率,绘制柱状图
(购买次数最多的商品排名-绘制前5条记录)
2). 根据列 [odrder_id] 分组,求出每个订单花费的总金额。
3). 根据每笔订单的总金额和其商品的总数量画出散点图。
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
# 需求1:
# 1). 从文件中读取所有的数据;
# 2). 获取数据中所有的商品名称;
goodsInfo = pd.read_csv('doc/chipo.csv')
# print(goodsInfo.head())
# print(goodsInfo.tail())
# print(goodsInfo.info())
# print(goodsInfo.describe())
print("商品名称显示: \n", goodsInfo['item_name'].head())
print("商品名称显示: \n", goodsInfo.item_name.head())
# 需求1:
#
# 3). 跟据商品的价格进行排序, 降序,
# 将价格最高的20件产品信息写入mosthighPrice.xlsx文件中;
# 重新赋值;
goodsInfo.item_price = goodsInfo.item_price.str.strip('$').astype(np.float)
highPriceData = goodsInfo.sort_values('item_price', ascending=False).head(20)
# print(highPriceData.head(5))
filename = 'doc\mostHighPrice.xlsx'
highPriceData.to_excel(filename)
print("保存成功.......")
# 需求2:
# 1). 统计列[item_name]中每种商品出现的频率,绘制柱状图
# (购买次数最多的商品排名-绘制前5条记录)
goodsInfo = pd.read_csv('doc\chipo.csv')
# new_info会统计每个商品名出现的次数;其中 Unnamed: 0就是我们需要获取的商品出现频率;
newInfo = goodsInfo.groupby('item_name').count()
mostRaiseGoods = newInfo.sort_values('Unnamed: 0', ascending=False)['Unnamed: 0'].head(5)
print(mostRaiseGoods) # Series对象
# 获取对象中的商品名称;
x = mostRaiseGoods.index
# 获取商品出现的次数;
y = mostRaiseGoods.values
# from pyecharts import Bar
#
# bar = Bar("购买次数最多的商品排名")
# bar.add("", x, y)
# bar.render()
# 需求2:
# 2). 根据列 [odrder_id] 分组,求出每个订单花费的总金额======订单数量(quantity), 订单总价(item_price)。
# 3). 根据每笔订单的总金额和其商品的总数量画出散点图。
goodsInfo = pd.read_csv('doc/chipo.csv')
# 获取订单数量
quantity = goodsInfo.quantity
# 获取订单item_price价格
item_price = goodsInfo.item_price.str.strip('$').astype(np.float)
print(item_price)
# 根据列 [odrder_id] 分组
order_group = goodsInfo.groupby("order_id")
# 每笔订单的总金额
x = order_group.item_price.sum()
# 商品的总数量
y = order_group.quantity.sum()
运行结果:
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
# 需求1:
# 1). 从文件中读取所有的数据;
# 2). 获取数据中所有的商品名称;
goodsInfo = pd.read_csv('doc/chipo.csv')
# print(goodsInfo.head())
# print(goodsInfo.tail())
# print(goodsInfo.info())
# print(goodsInfo.describe())
print("商品名称显示: \n", goodsInfo['item_name'].head())
print("商品名称显示: \n", goodsInfo.item_name.head())
# 需求1:
#
# 3). 跟据商品的价格进行排序, 降序,
# 将价格最高的20件产品信息写入mosthighPrice.xlsx文件中;
# 重新赋值;
goodsInfo.item_price = goodsInfo.item_price.str.strip('$').astype(np.float)
highPriceData = goodsInfo.sort_values('item_price', ascending=False).head(20)
# print(highPriceData.head(5))
filename = 'doc\mostHighPrice.xlsx'
highPriceData.to_excel(filename)
print("保存成功.......")
# 需求2:
# 1). 统计列[item_name]中每种商品出现的频率,绘制柱状图
# (购买次数最多的商品排名-绘制前5条记录)
goodsInfo = pd.read_csv('doc\chipo.csv')
# new_info会统计每个商品名出现的次数;其中 Unnamed: 0就是我们需要获取的商品出现频率;
newInfo = goodsInfo.groupby('item_name').count()
mostRaiseGoods = newInfo.sort_values('Unnamed: 0', ascending=False)['Unnamed: 0'].head(5)
print(mostRaiseGoods) # Series对象
# 获取对象中的商品名称;
x = mostRaiseGoods.index
# 获取商品出现的次数;
y = mostRaiseGoods.values
# from pyecharts import Bar
#
# bar = Bar("购买次数最多的商品排名")
# bar.add("", x, y)
# bar.render()
# 需求2:
# 2). 根据列 [odrder_id] 分组,求出每个订单花费的总金额======订单数量(quantity), 订单总价(item_price)。
# 3). 根据每笔订单的总金额和其商品的总数量画出散点图。
goodsInfo = pd.read_csv('doc/chipo.csv')
# 获取订单数量
quantity = goodsInfo.quantity
# 获取订单item_price价格
item_price = goodsInfo.item_price.str.strip('$').astype(np.float)
print(item_price)
# 根据列 [odrder_id] 分组
order_group = goodsInfo.groupby("order_id")
# 每笔订单的总金额
x = order_group.item_price.sum()
# 商品的总数量
y = order_group.quantity.sum()
其中,用到的文件如下: