Helsinki-NLP/opus-mt-zh-en模型部署

Helsinki-NLP

https://hf-mirror.com/Helsinki-NLP/opus-mt-zh-en

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch

model = AutoModelForSeq2SeqLM.from_pretrained("/data/models/Helsinki-NLP/opus-mt-zh-en").eval()
tokenizer = AutoTokenizer.from_pretrained("/data/models/Helsinki-NLP/opus-mt-zh-en")

def translate(text):
    with torch.no_grad():
        encoded = tokenizer([text], return_tensors="pt")
        sequences = model.generate(**encoded)
        return tokenizer.batch_decode(sequences, skip_special_tokens=True)[0]

input = "青春不能回头,所以青春没有终点。,.,/'[' ——《火影忍者》"
print(translate(input))
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("/data/models/Helsinki-NLP/opus-mt-zh-en")
model = AutoModelForSeq2SeqLM.from_pretrained("/data/models/Helsinki-NLP/opus-mt-zh-en")

content = ['你好 世界', '哈哈哈哈']

inputs = tokenizer(content, return_tensors="pt", padding=True)
translated_tokens = model.generate(**inputs, )
for translated in tokenizer.batch_decode(translated_tokens, skip_special_tokens=True):
    print(translated)
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline

tokenizer = AutoTokenizer.from_pretrained("/data/models/Helsinki-NLP/opus-mt-zh-en")
model = AutoModelForSeq2SeqLM.from_pretrained("/data/models/Helsinki-NLP/opus-mt-zh-en")

translator = pipeline(
    'translation',
    model=model,
    tokenizer=tokenizer,
    src_lang='zho_Hans',
    tgt_lang='eng_Latn',
    max_length=512
)
print(translator(["你好 世界", "青春", ]))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝净云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值