【最优化方法】常考题型复习(附真题答案)

第2题 分支定界法求解整数规划

设有最大化的整数规划问题R,与它相应的线性规划问题为R0,分枝定界法的做法是:
(1)用观察法求R的一个可行解,其目标值便是R的最优目标值z*的一个下界z。 (2)求解R0,得R0的最优解x(0)和最优值z0。若x(0)符合R的整数条件,则显然x(0)也是R的最优解,结束;否则,以R0作为一个分枝标明求解的结果,z0是问题R的最优目标值z*的一个上界z。 (3)分枝。取目标函数值最大的一个枝Rs,在Rs的解中任选一不符合整数条件的变量xj,其值为bj,构造两个约束条件xj≤[bj]和xj≥[bj]+1。将两个约束条件分别加入问题Rs,得两个后继规划问题Rs1和Rs2。不考虑整数条件求解这两个后继问题,以每个后继问题为一分枝标明求解的结果。 (4)定界。在各分枝中找出目标函数值最大者作为新的上界z;从已符合整数要求的各分枝中,找出目标函数值最大者作为新的下界z。 (5)比较与剪枝。各分枝的最优目标函数值中如果有小于z者,则剪掉这一枝(用打×表示),即以后不再考虑了。若已没有大于z的分枝,则已得到R的最优解,结束;否则,转(3)。










第3题 Newton法求解无约束极值问题


第4 题 动态规划最短路问题(原题)



运筹学指派问题

n个元素的最小问题用匈牙利法就可,即
1.将成本矩阵的各行减去该行的最小元素,使得每行都有0元素。
2.检查是否每行都有0元素,将没有0的那一行减去最小的元素,得到0
3.在矩阵中找到n个独立的0元素(不同行,不同列),这些0元素的位置就是
xij=1的时候,即将第i个人派去做第j件事情。
4.若不能找到n个独立的0,则用尽可能少的直线划去0(只能是整行或者整列划),然后将未划去的元素减去其中的最小元素,两直线的交叉处加上这个元素,其他直线上的点不做变化,反复进行这项操作就可得到n个独立的0.

若为最大问题,则选出最大利润,用这个值减去利润矩阵中的每个元素,之后再进行以上匈牙利法操作,得到最有指派结果。





评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

温柔说给风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值