二元组和三元组 Loss
一、孪生神经网络
- 网络结构:两个输入,两个网络,公用一个权重,得到一个输出
- 缺点:如果有多个人脸,要么需要多个输入,要么就是每次都输入到两个网络中,方法比较笨,但是技术是一步一步演化的。
- 总结:一位我比较敬佩的一个老师说过,技术都是有简单到复杂再到简单地过程,最终会就是大道至简。其实一般的规律或者好的想法,往往都是生活中简单地道理,随着慢慢的学习,应该就会发现这些,其实就和我们学习知识一样,或者读书一样,是先要把一本比较薄的书读厚,然后再把这本厚的书读薄的过程(就是自己总结,发现原来道理就是那么简单而深奥)。
二、Triplet Loss
- 思想:使用三个样本:正样本和负样本中选择一个样本数量多的作为Anchor锚点,然后另一个是正样本另一个是负样本,进行欧式距离计算,这个属于是困难样本的训练。
- 公式如下:
∑ i N [ ∣ ∣ f ( x i a − f ( x i p ) ) ∣ ∣ 2 2 − ∣ ∣ f ( x i a ) − f ( x i n ) ∣ ∣ + α ] + \sum_{i}^{N}[||f(x^{a}_{i}-f(x^{p}_{i}))||^{2}_{2}-||f(x^{a}_{i})-f(x^{n}_{i})||+α]_+ i∑N[∣∣f(xia−f(xip))∣∣22−∣∣f(xia)−f(xin)∣∣+α]+ - 核心的思想就是:隔离带的思想,后面人脸识别损失的优化,其实用的都是这么简单地道理。
- 隔离带:高速公路的隔离带,森林灭火的隔离带…有时候,算法最核心的思想就在生活中。所以,要善于观察生活。
预知后事如何,且听下回分解。