R 语言科研绘图第 48 期 --- 热力图-密度

在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。

为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式:

R 语言科研绘图模板 --- sciRplot https://mp.weixin.qq.com/s/QA_8LVqjkdg4A16zLonw4w?payreadticket=HNDwj04pvJtXIWAkxbaMqWV7SUKcQQFffrYSMZkWr9eBtqIDOi2mEV3Zl0VQDCAkpEQdMBs

本期绘图预览:

 

1. 导入包

 

我们首先导入本期绘图用到的 R 包:

library(ComplexHeatmap)

2. 准备数据

 

接下来我们导入绘图用到的数据,在 sciRplot 中给大家提供了测试数据:

data <- sciRplot_data

查看下数据格式:

 

3. 准备配色

 

颜色的选择往往是一件让人特别纠结的事情,这里我们直接设置配色,也可以使用 sciRcolor 来设置配色:

colors <- c("#5470c6","white","#91cc75")

sciRcolor 是为了 R 语言科研绘图开发的配色工具,包含了 100 种常用配色,详细信息见:

 

R 语言科研配色工具 --- sciRcolor https://mp.weixin.qq.com/s/XZol4VxvHnJD_49ij3f2mg?payreadticket=HDhojBWasY87harbKvIR69uCME4YIpzEPahcg3uoN1lGuPPFaOoyBR6gpep24XS8a8DCyI4

4. 绘制图形

 

接下来我们通过下面的代码来绘制图形:

breaks <- seq(-1,1,0.1)p <-   ComplexHeatmap::densityHeatmap(    data, col = colors,     ylab = NULL, column_title = "", show_quantiles=FALSE,    column_names_gp = gpar(fontsize = 15), tick_label_gp = gpar(fontsize = 15),    heatmap_legend_param = list(title = "Density", legend_height = unit(5, "cm"))  )p

5. 保存图形

 

最后我们保存绘制的图形:

png("save/heatmap-density.png", width = 1600, height = 1200, res=300, units = 'px')pdev.off()

 

sciRplot 介绍

为了解决 R 语言中科研绘图的问题,我推出了 sciRplot 项目。sciRplot 项目包含了以下内容:

① 100 种绘图代码,按照图形类型进行分类,包含 60 种基础绘图和 40 种进阶绘图

 

 

② 配备一站式 html文档,包含测试数据,代码一键复制交互式阅读提高用户体验

 

 

 

<think>好的,我现在需要帮助用户解决关于使用力图进行科研绘图的问题,特别是使用Matplotlib和Seaborn在Python中的方法。首先,我得回忆一下自己对这些库的了解,以及用户可能的实际需求。 用户提到的引用内容中,引用[1]提到Matplotlib和Seaborn是两大支柱,Matplotlib灵活而精细,Seaborn则更高级且简洁。引用[2]和[3]则具体提到了力图的绘制方法,尤其是Seaborn的便捷性。所以,我应该结合这些信息来组织回答。 首先,用户需要的是科研绘图的方法或工具,所以步骤的清晰性很重要。我应该分步骤讲解,从数据准备到绘图再到样式调整,每个步骤给出代码示例,并比较Matplotlib和Seaborn的不同,因为用户可能想知道两者的区别和适用场景。 接下来,我需要考虑科研绘图的特点,比如需要高质量的图像、标注清晰、颜色准确等。因此,在步骤中应该包括如何调整字体大小、添加标题和标签、选择合适的颜色映射(如coolwarm或viridis),以及如何导出高分辨率的图片。 然后,用户可能遇到的问题,比如如何处理缺失值,或者如何自定义颜色条。这时候可能需要提到在数据预处理中的注意事项,以及在绘图函数中的参数设置,比如Seaborn的heatmap函数中的参数annot、fmt、linewidths等。 另外,引用[3]指出Matplotlib的imshow函数需要手动添加colorbar和分隔线,而Seaborn更简单,所以在步骤中应该强调使用Seaborn的便利性,特别是对于科研人员来说,节省时间很重要。 可能还需要提到一些高级技巧,比如聚类力图,这在科研中常用于显示数据的层次结构,这时候可以引入Seaborn的clustermap函数。同时,结合引用[2]提到的Plotly,虽然用户主要问的是Matplotlib和Seaborn,但也可以简要提及其他工具作为扩展。 最后,生成的相关问题需要围绕用户可能进一步的需求,比如美化力图、处理大数据集、添加统计显著性标记等,这些都是在科研绘图中常见的问题,能够帮助用户深入探索。 需要确保所有的代码示例正确,并且符合用户提到的LaTeX格式要求,行内公式用$...$,独立公式用$$...$$,但在这个问题中可能公式较少,主要关注代码块和说明的正确性。同时,引用标识要正确添加到对应的引用位置,比如在提到Matplotlib和Seaborn时引用[^1],在力图相关性时引用[^2],在比较两者时引用[^3]。 总结来说,回答的结构应该是步骤式的,先介绍基本绘制方法,再讲进阶优化,然后比较工具差异,最后给出注意事项和相关问题。确保内容详实,代码示例清晰,并且引用正确。</think>### 力图科研绘图方法(基于Matplotlib与Seaborn) #### **一、基础绘制步骤** 1. **数据准备** 力图通常用于展示矩阵型数据的相关性或密度分布。以相关性矩阵为例: ```python import numpy as np import pandas as pd # 生成模拟数据(例如基因表达量或物理参数相关性) data = np.random.rand(10, 10) # 10x10矩阵 df = pd.DataFrame(data, columns=[f'Var_{i}' for i in range(1,11)]) ``` 2. **使用Seaborn快速绘制** Seaborn的`heatmap`函数可一键生成力图,适合科研场景[^2]: ```python import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(8, 6)) sns.heatmap(df, annot=True, fmt=".2f", cmap='coolwarm', linewidths=0.5) plt.title("基因表达相关性力图", fontsize=12) plt.xlabel("变量", fontsize=10) plt.ylabel("变量", fontsize=10) plt.savefig('heatmap_seaborn.png', dpi=300, bbox_inches='tight') plt.show() ``` - `annot=True`:显示数值 - `cmap`:颜色映射(推荐`coolwarm`、`viridis`) - `dpi=300`:导出高分辨率图像 3. **Matplotlib进阶控制** 若需精细调整(如自定义色标或添加公式标签),可使用Matplotlib的`imshow`函数[^3]: ```python plt.figure(figsize=(8, 6)) im = plt.imshow(df, cmap='RdYlBu') # 添加色标和公式 cbar = plt.colorbar(im) cbar.set_label('相关系数 $r$', rotation=270, labelpad=15) plt.title("能量分布力图 ($E = mc^2$)", fontsize=12) # 添加坐标轴标签 plt.xticks(range(10), df.columns, rotation=45) plt.yticks(range(10), df.columns) plt.savefig('heatmap_matplotlib.png', dpi=300) ``` #### **二、科研优化技巧** 1. **样式美化** - 使用`plt.rcParams`全局设置字体和分辨率: ```python plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'] # 解决中文乱码 plt.rcParams['axes.unicode_minus'] = False # 解决负号显示 plt.rcParams['savefig.dpi'] = 300 ``` - 通过`mask`参数隐藏对角线或无效值: ```python mask = np.triu(np.ones_like(df, dtype=bool)) # 仅显示下三角 sns.heatmap(df, mask=mask) ``` 2. **高级功能** - **聚类力图**(显示数据层次结构): ```python sns.clustermap(df, cmap='viridis', standard_scale=1) ``` - **添加统计显著性标记**(如星号`*`): ```python # 假设p_values是显著性矩阵 plt.text(2, 3, '*', ha='center', va='center', color='white') ``` #### **三、工具对比** | 工具 | 优点 | 适用场景 | |-------------|------------------------------------------|---------------------| | **Seaborn** | 代码简洁、自动标注、内置统计功能 | 快速生成标准力图 | | **Matplotlib** | 像素级控制、支持复杂公式渲染[^3] | 定制化需求或组合图表 | #### **四、注意事项** - **数据归一化**:若数据量纲差异大,需先标准化(如`StandardScaler`) - **颜色选择**:避免红绿色系(色盲友好性差),推荐`viridis`或`plasma` - **导出格式**:优先选择`.svg`或`.pdf`以保留矢量信息 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TigerZ 生信宝库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值