在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。
为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式:
本期绘图预览:
1. 导入包
我们首先导入本期绘图用到的 R 包:
library(ComplexHeatmap)
2. 准备数据
接下来我们导入绘图用到的数据,在 sciRplot 中给大家提供了测试数据:
data <- sciRplot_data
查看下数据格式:
3. 准备配色
颜色的选择往往是一件让人特别纠结的事情,这里我们直接设置配色,也可以使用 sciRcolor 来设置配色:
colors <- c("#5470c6","white","#91cc75")
sciRcolor 是为了 R 语言科研绘图开发的配色工具,包含了 100 种常用配色,详细信息见:
4. 绘制图形
接下来我们通过下面的代码来绘制图形:
breaks <- seq(-1,1,0.1)
p <-
ComplexHeatmap::densityHeatmap(
data, col = colors,
ylab = NULL, column_title = "", show_quantiles=FALSE,
column_names_gp = gpar(fontsize = 15), tick_label_gp = gpar(fontsize = 15),
heatmap_legend_param = list(title = "Density", legend_height = unit(5, "cm"))
)
p
5. 保存图形
最后我们保存绘制的图形:
png("save/heatmap-density.png", width = 1600, height = 1200, res=300, units = 'px')
p
dev.off()
sciRplot 介绍
为了解决 R 语言中科研绘图的问题,我推出了 sciRplot 项目。sciRplot 项目包含了以下内容:
① 100 种绘图代码,按照图形类型进行分类,包含 60 种基础绘图和 40 种进阶绘图
② 配备一站式 html文档,包含测试数据,代码一键复制,交互式阅读提高用户体验