线性代数复习CH2:矩阵

2.矩阵

2.1 矩阵的定义

矩阵:由 m × n m\times n m×n个数按照一定的次序排列成的m行n列的矩形数表称为 m × n m\times n m×n的矩阵,简称矩阵。
A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ a m 1 a m 2 ⋯ a m n ] ,简记为 A = ( a i j ) m × n A=\begin{bmatrix}a_{11}&a_{12}&\cdots & a_{1n}\\ a_{21}&a_{22}&\cdots & a_{2n}\\ \cdots&\cdots&\cdots&\cdots\\ a_{m1}&a_{m2}&\cdots & a_{mn} \end{bmatrix},简记为A=(a_{ij})_{m\times n} A= a11a21am1a12a22am2a1na2namn ,简记为A=(aij)m×n

  • 行矩阵:只有一行;
  • 列矩阵:只有一列

特殊的矩阵:

  • 当m==n时,即矩阵的行数与列数相等时,称矩阵为方阵

    • 主对角线:行标 == 列表
    • 斜对角线:行标 + 列表 == n

    只有方阵才有主对角线和斜对角线

  • 零矩阵

    image-20220724174332004
  • 对角矩阵

    一定是方阵

    image-20220724174404691
    • 单位阵E

      因为对角阵一定是方阵,所以只要一个角标就能确定维度

      image-20220724174432516
    • 数量阵

      image-20220724174518794
  • 三角阵

    image-20220724174620854
    • 上三角阵
    • 下三角阵
  • 梯形阵

    重要矩阵

    image-20220724174724145

2.2 矩阵的运算

2.2.1 线性运算
2.2.1.1 相等

矩阵相等:两个矩阵相等是指这两个矩阵有相同的行数与列数,且对应元素相等

  • 同型、对应元素相等
2.2.1.2 加减法

对应元素相加、相减

运算规律:

  • 交换律: A + B = B + A A+B=B+A A+B=B+A
  • 结合律: ( A + B ) + C = A + ( B + C ) (A+B)+C = A+(B+C) (A+B)+C=A+(B+C)
  • 零元: A + O = A = O + A , A − A = O A+O=A=O+A,A-A=O A+O=A=O+A,AA=O

负矩阵:每个元素都取负—— − A = ( − a i j ) m × n -A = (-a_{ij})_{m\times n} A=(aij)m×n

2.2.1.3 数乘

image-20220724191837028image-20220724191902251

2.2.2 矩阵的乘法
2.2.2.1 矩阵乘法的计算

在这里插入图片描述

2.2.2.2 矩阵乘法满足的性质

矩阵乘法的特征:

  • 矩阵乘法不满足交换律 A B ≠ B A AB\neq BA AB=BA
  • 矩阵乘法不满足消去律
  • A B = 0 AB=0 AB=0不一定A=0或B=0,可以是非零的因子

由于不满足上述的性质,所以矩阵的乘法对于完全平方等公式不成立。

在这里插入图片描述

满足的运算规律:

  • 结合律: ( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)

  • 分配律: A ( B + C ) = A B + A C A(B+C) = AB+AC A(B+C)=AB+AC

    ( B + C ) A = B A + C A (B+C)A = BA+CA (B+C)A=BA+CA

  • k ( A B ) = ( k A ) B = A ( k B ) k(AB) = (kA)B=A(kB) k(AB)=(kA)B=A(kB)

  • E m A m × n = A = A m × n E n E_mA_{m\times n} = A = A_{m\times n}E_n EmAm×n=A=Am×nEn

2.2.2.3 方阵的正整数幂

方阵的幂的定义: A k = A A A . . . A A^k=AAA...A Ak=AAA...A,特别的,当 A ≠ 0 A\neq 0 A=0时, A 0 = E A^0=E A0=E

  • A k + l = A k A l A^{k+l} = A^kA^l Ak+l=AkAl

  • ( A B ) k ≠ A k B k (AB)^k \neq A^kB^k (AB)k=AkBk

    ( A B ) k = A B A B A B A . . . A B (AB)^k = ABABABA...AB (AB)k=ABABABA...AB

    A k B k = A A A A A . . A B . . . . B B B A^kB^k = AAAAA..AB....BBB AkBk=AAAAA..AB....BBB

    若满足 A B = B A AB=BA AB=BA,那么上式相等

2.2.3矩阵的转置
2.2.3.1 转置的概念

矩阵A的第i行转换为第i列,那么结果为 A T A^T AT

在这里插入图片描述

特别的,对角阵的转置为其本身

运算规律:

  • ( A T ) T = A (A^T)^T=A (AT)T=A
  • ( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT
  • ( k A ) T = k A T (kA)^T = kA^T (kA)T=kAT
  • ( A B ) T = B T A T (AB)^T = B^TA^T (AB)T=BTAT

证明:

在这里插入图片描述

2.2.3.2 对称阵与非对称阵

对称阵与非对称阵一定是方阵

对称阵: A T = A A^T=A AT=A

对称阵的例子: A A T , A T A , A + A T AA^T,A^TA,A+A^T AAT,ATA,A+AT

反对称阵: A T = − A A^T=-A AT=A

反对称阵的例子: A − A T A-A^T AAT

任何一个矩阵都可以写成一个对称阵和一个反对称阵的和:

A = A + A T 2 + A − A T 2 A=\frac{A+A^T}{2}+\frac{A-A^T}{2} A=2A+AT+2AAT

反对称阵: A T = − A A^T=-A AT=A怎么说明 a i i = 0 a_{ii}=0 aii=0

2.2.4 方阵的行列式
2.2.4.1 定义

定义:由方阵A构成的行列式称为方阵的行列式,记为 ∣ A ∣ = d e t   A |A|=det\ A A=det A

只有方阵才有行列式!

在这里插入图片描述

在这里插入图片描述

2.2.4.2 奇异方阵与非奇异方阵

定义:若方阵的行列式不为0,那么称方阵为非奇异方阵,否则称为奇异方阵

  • 0矩阵一定是奇异矩阵
  • 单位阵是非奇异矩阵
2.2.4.3 方阵行列式的性质

由方阵A多确定的行列式除了具备行列式一般具有的性质外,还具有以下的性质:

设A,B为n阶方阵,k为常数,则有:

  • ∣ k A ∣ = k n ∣ A ∣ |kA| = k^n|A| kA=knA
  • ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=A∣∣B,如果A,B不是方阵,那么不成立——只有方阵才有行列式

证明:奇数阶反对称阵的行列式为0

2.2.5 伴随矩阵

注意排列的顺序!!!

在这里插入图片描述
在这里插入图片描述

复习:
a j 1 A i 1 + a j 2 A i 2 + . . . + a j n A i n = { D , ( i = j ) 0 , ( i ≠ j ) a_{j1}A_{i1}+a_{j2}A_{i2}+...+a_{jn}A_{in}=\begin{cases}D,(i = j)\\ 0,(i\neq j)\end{cases} aj1Ai1+aj2Ai2+...+ajnAin={D,(i=j)0,(i=j)
image-20220724210116495

那么有:

在这里插入图片描述

在这里插入图片描述

important:
A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE

2.3 初等变换

2.3.1 矩阵初等变换的定义

以下三种变换称为矩阵的第一、二、三种初等变换:

  • 对换矩阵中的第i, j两行(列)的位置,记做 r i j ( c i j ) r_{ij}(c_{ij}) rij(cij) r i ( c i ) ↔ r j ( c j ) r_i(c_i) \leftrightarrow r_j(c_j) ri(ci)rj(cj)
  • 非零常数k乘以第i行(列),记做 k r i ( k c i ) kr_i(kc_i) kri(kci)
  • 将矩阵的第j行(列)乘以常数k后加到第i行(列)对应元素上去,记做 r i + k r j ( c i + k c j ) . r_i+kr_j(c_i+kc_j). ri+krj(ci+kcj).

初等行变换和初等列变换是线性代数中的重要工具,统称为初等变换

初等变换的作用:

矩阵的初等变换可以将矩阵化为梯形阵

初等变换后矩阵之间不相等:利用初等变换将A化为B,A与B之间用记号 → \rightarrow 或者 ≅ \cong 连接

2.3.2 矩阵的等价
2.3.1 等价的定义

对矩阵A实行有限次初等变换得到矩阵B,则称A与B等价,记做 A ≅ B A\cong B AB或者 A → B A\rightarrow B AB

等价的性质:

等价矩阵具有自反性,对称性,传递性

  • 自反性: A ≅ A A\cong A AA
  • 传递性: A ≅ B A \cong B AB, B ≅ A B\cong A BA
  • 传递性: A ≅ B , B ≅ C ⇒ A ≅ C A\cong B, B\cong C\Rightarrow A\cong C AB,BCAC

在这里插入图片描述

等价标准型中1的个数与什么有关?

2.4 矩阵的秩

2.4.1 矩阵秩的概念

k阶子式:在 A m × n A_{m\times n} Am×n中任取k行k列,位于这些行、列相交处的 k 2 k^2 k2个元素,按原次序组成的k阶行列式,称为矩阵A的k阶子式。

一般的:
m × n 矩阵的 k 阶子式有 C m k C n k 个 m\times n矩阵的k阶子式有C_m^kC_n^k个 m×n矩阵的k阶子式有CmkCnk
image-20220724215731301

矩阵的秩rank:**矩阵的所有不为0子式的最高阶数称为矩阵的秩,**记做 r ( A ) r(A) r(A)

显然: r ( O ) = 0 ; r(O)=0; r(O)=0;只要A不是零矩阵,就有 r ( A ) > 0 r(A)>0 r(A)>0,并且:

(i) r ( A m × n ) < m i n { m , n } r(A_{m\times n})<min\{m,n\} r(Am×n)<min{m,n}

(ii)若有一个r阶子式不为0,那么 r ( A ) ≥ r r(A)\geq r r(A)r

​ 若所有的r阶子式全为0,那么 r ( A ) < r r(A)<r r(A)<r

(iii) r ( A T ) = r ( A ) r(A^T) = r(A) r(AT)=r(A)

(iv)设 A n × n , 若 ∣ A ∣ ≠ 0 , 则 r ( A ) = n ; 若 ∣ A ∣ = 0 , 则 r ( A ) < n A_{n\times n},若|A|\neq 0,则r(A) = n;若|A|=0,则r(A)<n An×n,A=0,r(A)=n;A=0,r(A)<n

2.4.2 秩的求法

梯形阵的秩很好求:非0行的行数

任何一个矩阵都可以通过初等变换将其转换为梯形阵

在这里插入图片描述

那么矩阵经初等变换后,其秩若不变,那么就可以根据初等变换求秩。

定理:矩阵经初等变换后其秩不变。

秩的求法:初等变换法

先做初等变换:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gzq9mTQi-1660358044153)(https://cdn.jsdelivr.net/gh/Holmes233666/blogImage@main/img/image-20220724223603588.png)]

2.4.3 性质

若两个矩阵有相同的秩,那么这两个矩阵有相同的标准型,从而等价。

反之,如果两个矩阵等价,那么他们的秩相同。

定理:矩阵A和B等价的充要条件是 r ( A ) = r ( B ) r(A)=r(B) r(A)=r(B)

2.4.4 满秩矩阵

定义:如果方阵A的秩与其阶数相等,那么则称A为满秩矩阵,否则称为降秩矩阵

定理:设A为满秩矩阵,那么A的标准型为同阶单位阵E。即:
A ≅ E A\cong E AE
定义:若方阵A的行列式 ∣ A ∣ ≠ 0 |A|\neq 0 A=0,则A为非奇异矩阵;若 ∣ A ∣ = 0 |A|=0 A=0,则称A为奇异矩阵。那么:
满秩 ⇔ 非奇异矩阵 降秩 ⇔ 奇异矩阵 满秩\Leftrightarrow非奇异矩阵\\降秩\Leftrightarrow 奇异矩阵 满秩非奇异矩阵降秩奇异矩阵

2.5 初等矩阵

2.5.1 定义与性质

定义:对单位阵进行一次初等变换后得到的矩阵称为初等矩阵。

image-20220724224829708

性质:

  • 初等矩阵的转置仍为同类型的初等矩阵

  • 初等矩阵是非奇异的

    ∣ E ( i , j ) ∣ = − 1 , ∣ E ( i ( k ) ) ∣ = k , ∣ E ( i , j ( k ) ) ∣ = 1 |E(i,j)|=-1,|E(i(k))|=k,|E(i,j(k))|=1 E(i,j)=1,E(i(k))=k,E(i,j(k))=1

2.5.2 初等矩阵与初等变换的关系

行变换相当于左乘初等矩阵;

列变换相当于右乘初等矩阵

问题:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0BHSYBwq-1660358044154)(https://cdn.jsdelivr.net/gh/Holmes233666/blogImage@main/img/image-20220724230805037.png)]

定义:若方阵A的秩与其阶数相等,那么A是满秩矩阵,否则A是降秩矩阵

定理:A是满秩矩阵,则A的标准型为同阶单位阵E,即:
A ≅ E A\cong E AE
推论1:以下命题等价:

  • A满秩
  • A等价于单位阵
  • A非奇异
  • A = P 1 P 2 . . . P m ; A = P_1P_2...P_m; A=P1P2...Pm其中 P i P_i Pi为初等矩阵

证明如下:

在这里插入图片描述

推论2:矩阵A与矩阵B等价的充要条件为存在m阶及n阶满秩矩阵P、Q,使 B m × n = P m A m × n Q n B_{m\times n} = P_mA_{m\times n}Q_n Bm×n=PmAm×nQn

由此还可以得到:若P、Q为满秩阵,则
r ( A ) = r ( P A ) = r ( P A Q ) = r ( A Q ) r(A) = r(PA) = r(PAQ) = r(AQ) r(A)=r(PA)=r(PAQ)=r(AQ)
在这里插入图片描述

2.6 矩阵的逆

2.6.1 矩阵逆的概念

定义:对n阶方阵A,若有n阶矩阵B使 A B = B A = E AB=BA=E AB=BA=E,则称B是A的逆矩阵,称A是可逆的。

  • 逆矩阵是唯一的,A的逆记做 A − 1 A^{-1} A1

    证明:设B,C都是A的逆,则有: B = E B = ( C A ) B = C ( A B ) = C E = C B=EB=(CA)B=C(AB)=CE=C B=EB=(CA)B=C(AB)=CE=C,即逆阵唯一

  • 并非每个方阵都可逆

2.6.2 逆阵存在的条件

由伴随矩阵的知识:
A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE
那么有上式知: ∣ A ∣ ≠ 0 |A|\neq 0 A=0时,方阵是可逆的

定理:n阶方阵A可逆的充要条件是 ∣ A ∣ ≠ 0 |A|\neq 0 A=0

2.6.3 逆矩阵的求法
2.6.3.1 伴随矩阵求法

A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A

定理:n阶方阵A可逆的充要条件是 ∣ A ∣ ≠ 0 |A|\neq 0 A=0充要性的证明:
" ⇒ " :由 A 可逆知 A A − 1 = E ,两边取行列式, ∣ A A − 1 ∣ = ∣ A ∣ ∣ A − 1 ∣ = ∣ E ∣ = 1 ⇒ ∣ A ∣ ≠ 0 " ⇐ " :由 ∣ A ∣ ≠ 0 , A A ∗ = A ∗ A = ∣ A ∣ E ⇒ A ( 1 ∣ A ∣ A ∗ ) = ( 1 ∣ A ∣ A ∗ ) A = E ⇒ A − 1 = 1 ∣ A ∣ A ∗ "\Rightarrow":由A可逆知AA^{-1}=E,两边取行列式,\\ |AA^{-1}|=|A||A^{-1}|=|E|=1\Rightarrow |A|\neq 0\\ "\Leftarrow":由|A|\neq 0,AA^*=A^*A=|A|E\Rightarrow A(\frac{1}{|A|}A^*)=(\frac{1}{|A|}A^*)A=E\\ \Rightarrow A^{-1}=\frac{1}{|A|}A^* "":由A可逆知AA1=E,两边取行列式,AA1=A∣∣A1=E=1A=0"":由A=0AA=AA=AEA(A1A)=(A1A)A=EA1=A1A

2.6.3.2 初等变换法

A 可逆 ⇒ A − 1 可逆 ⇒ A − 1 = P 1 P 2 . . . P s ⇒ P 1 P 2 . . . P s A = E ⇒ P 1 P 2 . . . P s E = A − 1 A可逆\Rightarrow A^{-1}可逆 \Rightarrow A^{-1}=P_1P_2...P_s\\ \Rightarrow P_1P_2...P_s A= E\\ \Rightarrow P_1P_2...P_sE = A^{-1} A可逆A1可逆A1=P1P2...PsP1P2...PsA=EP1P2...PsE=A1

综上可知:对A和E进行完全相同的初等变换,待 A A A变为 E E E时, E E E变为 A − 1 A^{-1} A1
( A : E ) → . . . → ( E : A − 1 ) (A:E)\rightarrow ... \rightarrow (E:A^{-1}) (A:E)...(E:A1)
在这里插入图片描述

2.6.3.3 定义求法

定义:对n阶方阵,若有n阶矩阵B,使得 A B = B A = E AB=BA=E AB=BA=E,则称B是A的逆矩阵,称A是可逆的。

性质: A B = E ( o r   B A = E ) ⇒ B = A − 1 AB=E(or\ BA=E)\Rightarrow B=A^{-1} AB=E(or BA=E)B=A1

故:对于n阶方阵,只需要找到一个n阶矩阵B,使得 A B = E AB=E AB=E或者 B A = E BA=E BA=E即可。

image-20220725155613853 image-20220725155937218
2.6.3.4 证明逆矩阵
2.6.4 逆矩阵的性质

{ A 可逆 ⇒ ∣ A − 1 ∣ = 1 ∣ A ∣ A 可逆 ⇒ A − 1 可逆, ( A − 1 ) − 1 = A A B = E ( o r   B A = E ) ⇒ B = A − 1 ( A T ) − 1 = ( A − 1 ) T ( A B ) − 1 = B − 1 A − 1 ( k A ) − 1 = 1 k A − 1 , ( k ≠ 0 , A 可逆 ) \begin{cases}A可逆\Rightarrow |A^{-1}| = \frac{1}{|A|}\\ A可逆\Rightarrow A^{-1}可逆,(A^{-1})^{-1}=A\\ AB=E(or\ BA=E)\Rightarrow B=A^{-1}\\ (A^T)^{-1}=(A^{-1})^T\\ (AB)^{-1} = B^{-1}A^{-1}\\ (kA)^{-1}=\frac{1}{k}A^{-1},(k\neq 0,A可逆) \end{cases} A可逆A1=A1A可逆A1可逆,(A1)1=AAB=E(or BA=E)B=A1(AT)1=(A1)T(AB)1=B1A1(kA)1=k1A1,(k=0,A可逆)

注意一个没有的性质: ( A + B ) − 1 ≠ A − 1 + B − 1 (A+B)^{-1}\neq A^{-1}+B^{-1} (A+B)1=A1+B1

证明:初等矩阵都可逆

image-20220725153015232

综上,初等矩阵的三个性质:

1.初等矩阵的转置

2.初等矩阵都是非奇异的矩阵

3.初等矩阵的逆阵仍为同类型的初等矩阵

2.7 分块矩阵

2.7.1 概念与定义

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tYJh1vft-1660358044156)(https://cdn.jsdelivr.net/gh/Holmes233666/blogImage@main/img/image-20220725160631522.png)]

2.7.2 分块矩阵的运算
  • 线性运算 加法与数乘

  • 乘法运算 符合乘法的要求

  • 转置运算 大块小块一起转

在这里插入图片描述

2.7.3 几种特殊的分块矩阵
2.7.3.1 分块矩阵
  • 准对角阵

在这里插入图片描述

∣ A ∣ = ∣ A 1 ∣ A 2 ∣ . . . ∣ A s ∣ |A| = |A_1|A_2|...|A_s| A=A1A2∣...∣As

A可逆的充要条件是每一个小块都可逆

在这里插入图片描述

r ( A ) = r ( A 1 ) + r ( A 2 ) + . . . + r ( A s ) r(A) =r(A_1)+r(A_2)+...+r(A_s) r(A)=r(A1)+r(A2)+...+r(As)

在这里插入图片描述

  • 分块三角阵

在这里插入图片描述

  • 分块斜对角阵

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KgeyAnmF-1660358044158)(https://cdn.jsdelivr.net/gh/Holmes233666/blogImage@main/img/image-20220725162338356.png)]

2.8 矩阵方程——逆矩阵的应用

矩阵方程的三中类型:

  • AX=B

  • XA=B

在这里插入图片描述

  • AXC=B

在这里插入图片描述

在这里插入图片描述

一定要先化简,再求解

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Blanche117

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值