大学物理复习笔记:刚体力学基础,动量矩

刚体力学基础,动量矩

一、刚体和刚体的基本运动
  1. 概念:在力的作用下,大小和方向都保持不变的物体成为刚体

  2. 运动形式:

    ①平动

    刚体运动时,若在刚体内任意引一条线段,该线段始终与自身保持平行,则刚体做平动

    运动特点:在任何时刻任一点的位移 Δ r ⃗ \Delta\vec{r} Δr ,速度 v ⃗ \vec{v} v ,加速度 a ⃗ \vec{a} a 也都相同

    ②定轴转动

    刚体内各点都绕同一直线做圆周运动,则这种运动称为刚体的转动

    (1)正负方向的确定:右手螺旋定则

    (2)角坐标:定平面和动平面的夹角则称为角坐标 θ \theta θ

    在这里插入图片描述

    ​ 角坐标是时间t的单值连续函数:
    角 坐 标 : θ = f ( t ) 角 位 移 : Δ θ = θ 2 − θ 1 角坐标:\theta=f(t)\\ 角位移:\Delta{\theta}=\theta_2-\theta_1 θ=f(t)Δθ=θ2θ1
    ​ (2)角速度:
    ω = lim ⁡ Δ t → ∞ Δ θ Δ t = d θ d t = f ′ ( t ) \omega=\lim\limits_{\Delta{t}\rightarrow\infty}\frac{\Delta{\theta}}{\Delta{t}}=\frac{d\theta}{dt}=f'(t) ω=ΔtlimΔtΔθ=dtdθ=f(t)
    ​ 如果刚体沿着正方向转动,那么 ω \omega ω为正,反之为负

    ​ (3)角加速度
    ω = lim ⁡ Δ t → ∞ Δ ω Δ t = d ω d t = f ′ ′ ( t ) \omega=\lim\limits_{\Delta{t}\rightarrow\infty}\frac{\Delta{\omega}}{\Delta{t}}=\frac{d\omega}{dt}=f''(t) ω=ΔtlimΔtΔω=dtdω=f(t)

  3. 描述刚体上任意一点的运动量有两组
    线 量 : r ⃗ , Δ r ⃗ , v ⃗ , a ⃗ 角 量 : θ , Δ θ , ω , β 线量:\vec{r},\Delta\vec{r},\vec{v},\vec{a}\\ 角量:\theta,\Delta\theta,\omega,\beta 线r ,Δr ,v ,a θ,Δθ,ω,β
    (1)线量和角量的关系:

    • s = r θ s=r\theta s=rθ
    • v = r ω {v}=r\omega v=rω(区别刚体转动和之前的质点圆周运动的速度的求法)
    • a ⃗ τ = r β , a ⃗ n = r ω 2 \vec{a}_\tau=r\beta,\vec{a}_n=r\omega^2 a τ=rβ,a n=rω2
    • v ⃗ = v ⋅ τ ⃗ \vec{v}=v·\vec\tau v =vτ
    • a ⃗ = a ⃗ τ + a ⃗ n \vec{a}=\vec{a}_\tau+\vec{a}_n a =a τ+a n

    (2)角速度矢量 ω ⃗ \vec{\omega} ω

    ω ⃗ \vec\omega ω v ⃗ \vec{v} v 的关系:
    v ⃗ = ω ⃗ × r ⃗ ∣ v ⃗ ∣ = ω ⋅ r ⋅ s i n π 2 \vec{v}=\vec{\omega}×\vec{r}\\ |\vec{v}|=\omega·r·sin\frac{π}{2} v =ω ×r v =ωrsin2π

  4. 刚体定轴转动问题的分类

    (1)积分法

    (2)微分法

二、力矩,刚体绕定轴转动的微分方程
  1. 力矩

    (1)力是改变平动物体运动状态的原因(动量描述)(获得加速度),

    力矩是改变转动物体运动状态的原因(动量矩描述)(获得角加速度)

    (2)力矩的定义
    M 0 ⃗ ( F ⃗ ) = r ⃗ × F ⃗ \vec{M_0}(\vec{F})=\vec{r}×\vec{F} M0 (F )=r ×F
    在这里插入图片描述

    力矩的大小: ∣ r ⃗ ∣ ∣ F ⃗ ∣ s i n φ = F h |\vec{r}||\vec{F}|sin\varphi=Fh r F sinφ=Fh

    力矩的方向:右手螺旋定则

    注:

    • F ⃗ \vec{F} F 不在转动平面内,要将 F ⃗ \vec{F} F 分解:
      F ⃗ = { F ∥ ⃗ : 不 产 生 矩 F ⊥ ⃗ : 产 生 矩 \vec{F}= \begin{cases} \vec{F_{∥}}:不产生矩\\ \vec{F_{⊥}}:产生矩\\ \end{cases} F ={F :F

    • 同一力对不同转轴,力矩不同,所以必指明是对哪个转轴的力矩

    • 在转动平面内有多个力作用于刚体时,刚体所受的总力矩等于各力对同一转轴的力矩的矢量和(代数和)
      M ⃗ = r 1 ⃗ × F 1 ⃗ + r 2 ⃗ × F 2 ⃗ + . . . + r n ⃗ × F n ⃗ \vec{M}=\vec{r_1}×\vec{F_1}+\vec{r_2}×\vec{F_2}+...+\vec{r_n}×\vec{F_n} M =r1 ×F1 +r2 ×F2 +...+rn ×Fn

    • 合力矩指各分力的力矩之和而不是合力的力矩

    • 求摩擦力的力矩 M f M_f Mf
      d x → d m → d f → d M f dx\rightarrow{dm}\rightarrow{df}\rightarrow{dM_f} dxdmdfdMf

  2. 刚体绕定轴转动的微分方程(转动定律)

    平动中,力的瞬时作用规律: F ⃗ = m a ⃗ \vec{F}=m\vec{a} F =ma

    转动中,力矩的瞬时作用规律: M z = J z β M_z=J_z\beta Mz=Jzβ
    其 中 , ∑ m i r i 2 = J 其中,\sum{m_ir_i^2=J} ,miri2=J
    转动定律:
    M z = J z β z M_z=J_z\beta_z Mz=Jzβz
    注意

    • M z , β M_z,\beta Mz,β本是矢量,在定轴转动中,其方向只有正负
      β 和 ω 同 向 , 加 速 转 动 β 和 ω 反 向 , 减 速 转 动 \beta和\omega同向,加速转动\\ \beta和\omega反向,减速转动 βωβω

    • 对比 F ⃗ = m a ⃗ \vec{F}=m\vec{a} F =ma

      J和M地位相同, a ⃗ \vec{a} a β ⃗ \vec{\beta} β 地位相同

  3. 转动惯量

    对于质量连续分布的刚体
    J z = ∑ m i ⋅ r i 2 = ∫ r 2 d m = ∫ V r 2 ρ d V J_z=\sum{m_i·r_i^2}=\int{r^2}dm=\int\limits_Vr^2{\rho}dV Jz=miri2=r2dm=Vr2ρdV
    注意:

    • J受到:质量,质量分布,转轴的位置的影响,所以J必须指明对于哪个转轴

    (1)转动惯量的计算

    ①叠加原理:刚体对一轴的 J J J等于组成刚体的各部分的 J i J_i Ji的总和
    J z = J a + J b + J c J_z=J_a+J_b+J_c Jz=Ja+Jb+Jc
    ②平行轴原理:两转轴平行,一轴通过质心,另外一轴通过任意一个点o,则
    J o z = J C z + m h 2 J_{oz}=J_{Cz}+mh^2 Joz=JCz+mh2
    在这里插入图片描述

    ③薄板的垂直轴定理:
    J z = J x + J y J_z=J_x+J_y Jz=Jx+Jy
    ④常见的转动惯量的计算(转轴均为集合轴)

    • 匀质圆环(质量为M,半径为R)
      d J = d m × R 2 在 圆 环 上 取 一 小 段 为 d l , 则 这 一 小 段 的 质 量 d m = d l 2 π R M J = ∫ 0 2 π R R 2 d m = ∫ 0 2 π R R 2 × M 2 π R d l = M R 2 dJ=dm\times{R^2}\\ 在圆环上取一小段为dl,则这一小段的质量dm=\frac{dl}{2\pi{R}}M\\ J=\int_0^{2\pi{R}}R^2dm=\int_0^{2\pi{R}}R^2\times\frac{M}{2\pi{R}}dl=MR^2 dJ=dm×R2dldm=2πRdlMJ=02πRR2dm=02πRR2×2πRMdl=MR2

    • 匀质圆盘(质量为M,半径为R)
      d J = d m × R 2 在 圆 盘 上 距 离 圆 心 为 r 处 取 一 个 宽 度 为 d r 的 圆 环 , 略 去 高 阶 无 穷 小 则 圆 环 质 量 : d m = π ( r + d r ) 2 − π r 2 π R 2 M = 2 r d r R 2 M J = ∫ 0 R r 2 d m = ∫ 0 R 2 r 3 R 2 M d r = 1 2 M R 2 dJ=dm\times{R^2}\\ 在圆盘上距离圆心为r处取一个宽度为dr的圆环,略去高阶无穷小\\ 则圆环质量:dm=\frac{\pi(r+dr)^2-\pi{r^2}}{\pi{R^2}}M=\frac{2rdr}{R^2}M\\ J=\int_0^{R}r^2dm=\int_0^{R}\frac{2r^3}{R^2}Mdr=\frac{1}{2}MR^2 dJ=dm×R2rdrdm=πR2π(r+dr)2πr2M=R22rdrMJ=0Rr2dm=0RR22r3Mdr=21MR2

    • 匀质球体(质量为M,半径为R)
      J = 2 5 M R 2 J=\frac{2}{5}MR^2 J=52MR2

    • 均匀圆柱体(质量为M,半径为R)
      ( 类 似 于 圆 盘 ) d J = d m × r 2 在 圆 柱 上 底 面 距 离 圆 柱 上 底 面 的 圆 心 为 r 处 取 一 个 宽 度 为 d r 的 圆 环 , 略 去 高 阶 无 穷 小 则 圆 柱 环 质 量 : d m = d S × h = π ( r + d r ) 2 h − π r 2 h π R 2 h M = 2 r d r R 2 M J = ∫ 0 R r 2 × 2 r M R 2 d r = 1 2 M R 2 (类似于圆盘)\\ dJ=dm\times{r^2}\\ 在圆柱上底面距离圆柱上底面的圆心为r处取一个宽度为dr的圆环,略去高阶无穷小\\ 则圆柱环质量:dm=dS\times{h}=\frac{\pi(r+dr)^2h-\pi{r^2}h}{\pi{R^2}h}M=\frac{2rdr}{R^2}M\\ J=\int_{0}^{R}r^2\times\frac{2rM}{R^2}dr=\frac{1}{2}MR^2 ()dJ=dm×r2rdrdm=dS×h=πR2hπ(r+dr)2hπr2hM=R22rdrMJ=0Rr2×R22rMdr=21MR2

    • 均匀细杆(质量为M,长度为L)
      d J = d m × x 2 在 细 杆 距 离 中 心 x 处 取 一 段 微 元 d x , 则 微 元 质 量 d m = d x l M J = ∫ − l 2 l 2 x 2 d m = ∫ − l 2 l 2 x 2 × d x l M = 1 12 M L 2 dJ=dm\times{x^2}\\ 在细杆距离中心x处取一段微元dx,则微元质量dm=\frac{dx}{l}M\\ J=\int_{-\frac{l}{2}}^{\frac{l}{2}}x^2dm=\int_{-\frac{l}{2}}^{\frac{l}{2}}x^2\times\frac{dx}{l}M=\frac{1}{12}ML^2 dJ=dm×x2xdxdm=ldxMJ=2l2lx2dm=2l2lx2×ldxM=121ML2

  4. 刚体定轴转动的动力学问题

    (1)已知运动状态,求力矩
    θ → ω → β → M , 微 分 法 \theta\rightarrow\omega\rightarrow\beta\rightarrow{M},微分法 θωβM,
    (2)已知力矩,求运动状态
    M → β → ω → θ , 积 分 法 M\rightarrow\beta\rightarrow\omega\rightarrow\theta,积分法 Mβωθ,

  5. 转动定律的应用
    确 定 研 究 对 象 { 物 体 做 平 动 : 分 析 外 力 , 运 动 状 态 , 利 用 F ⃗ = m a ⃗ 列 方 程 物 体 做 转 动 : 分 析 外 力 矩 , 转 动 状 态 , 利 用 M = J β 列 方 程 利 用 角 线 量 关 系 列 方 程 确定研究对象\begin{cases} 物体做平动:分析外力,运动状态,利用\vec{F}=m\vec{a}列方程\\ 物体做转动:分析外力矩,转动状态,利用M=J\beta列方程\\ 利用角线量关系列方程 \end{cases} F =ma M=Jβ线

三、绕定轴转动刚体动能,动能定理
  1. 绕定轴转动的刚体的动能
    E k = ∑ E k i = 1 2 ∑ m i v 2 = 1 2 [ ∑ m i r i 2 ] ω 2 = 1 2 J ω 2 E_k=\sum{E_{ki}}=\frac{1}{2}\sum{m_i}v^2=\frac{1}{2}[\sum{m_ir_i^2}]\omega^2=\frac{1}{2}J\omega^2 Ek=Eki=21miv2=21[miri2]ω2=21Jω2
    对比:
    平 动 动 能 : 1 2 m v 2 转 动 动 能 : 1 2 J ω 2 平动动能:\frac{1}{2}mv^2\\ 转动动能:\frac{1}{2}J\omega^2 :21mv221Jω2

  2. 力矩的功
    元 功 : d A = d r ⃗ × F ⃗ = M d θ 元功:dA=d{\vec{r}}\times\vec{F}=Md\theta dA=dr ×F =Mdθ
    注意:

    • 力对刚体做的功,就是该力的力矩对刚体做的功

    • 内力矩成对出现,一对内力矩的功的和一定为0(对比平动,一般内力的功的和不为0)

    • M为恒力矩,则 A = M ( θ 2 − θ 1 ) A=M(\theta_2-\theta_1) A=M(θ2θ1)

      M为变力矩,则 A = ∫ θ 1 θ 2 M d θ A=\int_{\theta_1}^{\theta_2}Md\theta A=θ1θ2Mdθ

    • 力矩的瞬时功率:
      P = d A d t = M d θ d t = M ω P=\frac{dA}{dt}=\frac{Md\theta}{dt}=M\omega P=dtdA=dtMdθ=Mω

  3. 绕定轴转动刚体的动能定理
    ∫ θ 1 θ 2 M d θ = 1 2 J ω 2 2 − 1 2 J ω 1 2 合 外 力 矩 的 功 等 于 刚 体 转 动 动 能 的 增 量 \int_{\theta_1}^{\theta_2}Md\theta=\frac{1}{2}J\omega_2^2-\frac{1}{2}J\omega_1^2\\ 合外力矩的功等于刚体转动动能的增量 θ1θ2Mdθ=21Jω2221Jω12

  4. 功能原理,机械能守恒定律

    机械能E:
    E = E p + E k E k : { 平 动 部 分 : 1 2 m v 2 转 动 部 分 : 1 2 J ω 2 E p : 弹 性 势 能 , 重 力 势 能 E=E_p+E_k\\ E_k:\begin{cases} 平动部分:\frac{1}{2}mv^2\\ 转动部分:\frac{1}{2}J\omega^2\\ \end{cases}\\ E_p:弹性势能,重力势能 E=Ep+EkEk:{21mv221Jω2Ep:
    机械能守恒定律:
    d A 外 + d A 非 保 守 内 = 0 , 则 E 守 恒 ; 即 : 只 有 保 守 内 力 做 功 ( 和 合 外 力 是 否 为 零 没 有 关 系 ) dA_{外}+dA_{非保守内}=0,则E守恒;\\ 即:只有保守内力做功(和合外力是否为零没有关系) dA+dA=0,E()

四、角动量(动量矩)
  1. 动量矩

    质点角动量的定义:
    L 0 ⃗ = r ⃗ × m v ⃗ 大 小 : ∣ L 0 ∣ = r P s i n φ = r m v s i n φ \vec{L_0}=\vec{r}\times{m\vec{v}}\\ 大小:|L_0|=rPsin\varphi=rmvsin\varphi L0 =r ×mv L0=rPsinφ=rmvsinφ
    P ⃗ \vec{P} P 不能描述圆盘的运动状态,但是 L 0 ⃗ \vec{L_0} L0 可以描述
    L z = ∑ k Δ m k v k r k = ∑ k Δ m k r k 2 ω = J z ω L_z=\sum\limits_{k}\Delta{m}_kv_kr_k=\sum\limits_{k}\Delta{m}_kr_k^2\omega=J_z\omega Lz=kΔmkvkrk=kΔmkrk2ω=Jzω

  2. 质点的角动量定理
    d L 0 ⃗ d t = r ⃗ × F ⃗ = M 0 运 动 质 点 对 点 o 的 角 动 量 随 t 的 变 化 率 等 于 质 点 所 受 的 外 力 对 同 一 固 定 点 的 合 外 力 矩 \frac{d\vec{L_0}}{dt}=\vec{r}\times\vec{F}=M_0\\ 运动质点对点 o 的角动量随 t 的变化率等于质点所受的外力对同一固定点的合外力矩 dtdL0 =r ×F =M0ot
    M 0 = 0 M_0=0 M0=0时, L 0 ⃗ = J ω \vec{L_0}=J\omega L0 =Jω为常量,守恒

    特例:当质点在有心力下运动, L 0 ⃗ \vec{L_0} L0 守恒

    有心力:质点只受来自于定点的引力或斥力,则质点所受的力为有心力,定点称为力心。有心力对力心的力矩恒为零

    如,卫星绕地球转,电子的绕核运动等

  3. 刚体绕定轴转动的角动量定理

    (1)动量矩定理:

    当刚体绕z轴转动时,刚体对z轴的动量矩 L z L_z Lz应为
    L z = J z ω L_z=J_z\omega Lz=Jzω
    两边对时间t求导:
    d L z d t = d d t ( J ω ) \frac{dL_z}{dt}=\frac{d}{dt}(J\omega) dtdLz=dtd(Jω)
    即,
    d d t ( J z ω ) = M z \frac{d}{dt}(J_z\omega)=M_z dtd(Jzω)=Mz

    角动量定理的积分形式:
    ∫ t 1 t 2 M d t = J ω 2 − J ω 1 \int_{t_1}^{t_2}Mdt=J\omega_2-J\omega_1 t1t2Mdt=Jω2Jω1
    角动量定理的微分形式:
    M d t = d L = d ( J ω ) Mdt=dL=d(J\omega) Mdt=dL=d(Jω)
    (2)角动量守恒定律

    M 外 = 0 M_{外}=0 M=0时, J ω J\omega Jω为衡量

    M 外 = 0 M_{外}=0 M=0的条件:

    • 力为零
    • 力通过转动轴或点,力臂为零,所以力矩为零.适用于定轴转与定点转
    • 力与转动轴平行,这个力不引起你建的轴的垂直面内的转动情况.定点转动时依然有力矩
  • 36
    点赞
  • 134
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Blanche117

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值