Python中的回调函数

回调函数是什么:

百度解释

回调函数就是一个被作为参数传递的函数。在C语言中,回调函数只能使用函数指针实现,在C++、Python、
ECMAScript等更现代的编程语言中还可以使用仿函数或匿名函数。
回调函数的使用可以大大提升编程的效率,这使得它在现代编程中被非常多地使用。同时,有一些需求
必须要使用回调函数来实现。
最著名的回调函数调用有C/C++标准库stdlib.h/cstdlib中的快速排序函数qsort和二分查找函数bsearch
中都会要求的一个与strcmp类似的参数,用于设置数据的比较方法。

回调函数的机制

⑴定义一个回调函数;
⑵提供函数实现的一方在初始化的时候,将回调函数的函数指针注册给调用者;
⑶当特定的事件或条件发生的时候,调用者使用函数指针调用回调函数对事件进行处理。

在C中回调函数是通过函数指针来实现的,再Python中,已经没有指针这个说法了,一般都是说函数名。简单来说就是定义一个函数,然后将这个函数的函数名传递给另一个函数做参数,以这个参数命名的函数就是回调函数。

def my_callbcak(args):
    print(*args)

def caller(args, func):
    func(args)

caller((1,2), my_callbcak)

结果:
# 1 2

其中:my_callback是回调函数,因为它作为参数传递给了caller

延伸:

带额外状态信息的回调函数,这里讲下异步处理有关的回调函数

def apply_ascyn(func, args, callback):
    result = func(*args)
    callback(result)

def add(x, y):
    return x + y

def print_result(result):
    print(result)

apply_ascyn(add, (2, 3), callback=print_result)

结果:
5

这里带额外信息的回调函数是print_result。

注意:这里print_result只能接收一个result的参数,不能传入其他信息。当想让回调函数访问其他变量或者特定环境的变量值的时候会遇到问题。

解决办法:

1、为了让回调函数访问外部信息,使用一个绑定方法来代替这个简单函数。
def appy_async(func, args, *, callback):
    result = func(*args)
    callback(result)

def add(x ,y):
    return x + y

class ResultHandler(object):
    def __init__(self):
        self.sequence = 0

    def handle(self, result):
        self.sequence += 1
        print("[{}] Got: {}".format(self.sequence, result))

r = ResultHandler()
appy_async(add, (2,3), callback=r.handle)

结果:
[1] Got: 5
2、使用闭包代替上面的类来实现
def apply_async(func, args, *, callback):
    result = func(*args)
    callback(result)

def add(x ,y):
    return x + y

def make_handler():
    sequence = 0
    def handler(result):
        nonlocal sequence
        sequence += 1
        print("[{}] Got:{}".format(sequence, result))
    return handler

handler = make_handler()
apply_async(add, (2,3), callback=handler)
结果:
[1] Got:5
3、使用协程
def apply_async(func, args, *, callback):
    result = func(*args)
    callback(result)

def add(x, y):
    return x + y

def make_handler():
    sequence = 0
    while True:
        result = yield  # yield实现协程
        sequence += 1
        print("[{}] Got:{}".format(sequence, result))

handle = make_handler()
next(handle)
apply_async(add, (2,3), callback=handle.send)

结果:
[1] Got:5

yield实现协程的内容参考另一篇文章:Python中的协程

### Python 回调函数的概念 在 Python ,由于函数是一等公民,因此可以像其他对象一样被传递、赋值给变量,并作为参数传递给其他函数。这种特性使得 Python 支持高阶函数和回调机制。 ### 回调函数的定义 回调函数是指一个函数 A 接受另一个函数 B 作为参数,在特定条件下由函数 A 调用这个传入的函数 B 的过程[^2]。 ### 实现方式与示例 #### 定义带有回调功能的方法 通过定义接受函数类型的参数来创建支持回调模式的方法: ```python def do_something(callback): """ 执行某些操作,并在完成时调用回调函数。 参数: callback (function): 当前方法执行完毕后的回调处理逻辑 """ # 假设这里执行了一些复杂的操作... result = "Operation completed!" # 操作完成后,调用回调函数并传递结果数据 callback(result) ``` 此段代码展示了 `do_something` 函数接收名为 `callback` 的参数,当内部操作结束之后会触发该回调并将最终的结果作为实参提供给它[^1]。 #### 创建具体的回调处理器 为了响应来自上述函数的通知消息,还需要准备相应的事件监听器即实际要被执行的具体业务逻辑: ```python def handle_completion(message): print(f"Received message from callback: {message}") ``` 这段实现了简单的打印日志行为,当然也可以根据需求扩展成更复杂的功能模块[^3]。 #### 组合使用两者形成完整的流程控制结构 最后一步就是把前面两部分结合起来构成整个异步编程模型的重要组成部分——基于事件驱动架构下的任务调度体系: ```python if __name__ == "__main__": # 将自定义好的回调注册到目标服务端口去等待时机成熟自动激活运行 do_something(handle_completion) # 输出将会是: # Received message from callback: Operation completed! ``` 以上例子清晰地说明了如何利用 Python 特有的语法糖衣包裹起传统意义上的委托设计模式从而简化开发人员编写并发程序的工作量的同时提高了可读性和维护性[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值