Copula(1)

本文介绍了Copula函数在统计和金融经济中的应用,包括构造多变量联合分布、估计模型参数、刻画资产变量的相依性和计算尾部相依性。通过sklar定理和copula的定义,展示了如何将复杂分布映射到易于处理的分布,以研究变量间的关系。
摘要由CSDN通过智能技术生成

Copula(1)

copula函数又称为连接函数,是将一些特征联系在一起组成一个‘整体’,比如将两个变量的分布联系在一起组成一个二元联合分布。
引入copula的目的:构造多个变量之间的联合分布。在构造联合分布之后,可以基于多元联合分布进行后续分析。
copula函数的应用(统计和金融经济方面):
1.构造似然函数,估计模型中的带估参数
2.计算金融市场中资产变量的相依性。在金融风险分析中,非椭圆分布情况下的相依性依靠线性相关性无法准确反映,因此需寻求其他刻画相依性的度量,比如秩相关。此外,在金融风险建模中,我们关注多元损失分布的尾部相依结构,因此需要关注尾部相依性的计算。

copula函数和相依性

copula的函数定义

sklar定理
设F和G分别是变量X和Y的边际分布,并且设H(x,y)是(X,Y)的联合分布函数,那么存在一个copula函数C,使得对于所有的取值(x,y)有:
H ( x , y ) = C ( F ( x ) , G ( y ) ) H(x,y)=C(F(x),G(y)) H(x,y)=C(F(x),G(y))

如果F,G是连续函数,那么copula函数C是唯一的。反之,如果C是一个copula函数, F , G F,G FG是单变量分布函数,那么 H ( x , y ) H(x,y) H(x,y)是边缘分布为 F , G F,G F,G的随机向量的联合分布函数。

copula函数的一些其他定义

def1
在一般情形下,n元copula函数C: [ 0 , 1 ] n → [ 0 , 1 ] [0,1]^n \rightarrow [0,1] [0,1]n[0,1]是多元联合分布
C ( u 1 , x 2 , . . . , x n ) = P ( U 1 ≤ u 1 , U 2 ≤ u 2 , . . . , U n ≤ u n ) C(u_1,x_2,...,x_n)=P(U_1\le u_1,U_2\le u_2,...,U_n\le u_n) C(u1,x2,...,xn)=P(U1u1,U2u2...,Unun)
其中 U 1 , U 2 , . . . , U n U_1,U_2,...,U_n U1,U2,...,Un是标准均匀变量

def2
Nelsen在1998年给出了Copula函数的定义,指出具有下面性质的函数C是N维Copula函数。
1).C=IN=[0,1]N,C函数的定义域在[0,1]的N维空间上。
2).函数C在它每个维度上都是单调递增的函数
3).假设任意的 m ∈ ( 0 , 1 ) m\in (0,1) m(0,1),C的边缘分布 C n ( ⋅ ) C_n(\cdot) Cn()满足 C n ( 1 , . . . , m n , . . . , 1 ) = m C_n(1,...,m_n,...,1)=m Cn(1,...,mn,...,1)=m,其中 n ∈ [ 1 , N ] n\in [1,N] n[1,N]

从sklar定理可以看出,copula函数是一个映射,是将两个 [ 0 , 1 ] [0,1] [0,1]区间的变量映射到了一维 [ 0 , 1 ] [0,1] [0,1]区间,即 [ 0 , 1 ] ∗ [ 0 , 1 ] → [ 0 , 1 ] [0,1]*[0,1] \rightarrow [0,1] [0,1][0,1][0,1]。在利用copula函数构造联合分布函数之后,可以得到联合密度函数
h ( x , y ) = c ( F ( x ) , G ( y ) f ( x ) g ( y ) ) h(x,y)=c(F(x),G(y)f(x)g(y)) h(x,y)=c(F(x),G(y)f(x)g(y))
其中 c ( F ( x ) , G ( y ) ) c(F(x),G(y)) c(F(x),G(y))是copula函数的密度函数, f ( x ) , g ( y ) f(x),g(y) f(x),g(y)是X,Y的密度函数。

copula函数的工作原理
基本思想:如果原始变量的边际分布是复杂的分布或者边际分布是不同的分布,那么原始变量联合分布的相关结构可能不容易被定义或者无法被定义,那便可以通过映射的方式,将这些边际分布映射到一些性质比较好的边际分布上面,比如正态分布,student-t分布,由于这些性状较好的分布容易构造联合分布以及研究它们之间的相依关系,进而我们就间接地定义了原始变量之间的相关结构。
example:假设原始变量 V 1 ( X ) , V 2 ( Y ) V_1(X),V_2(Y) V1(X),V2(Y)服从不同的边际分布,那么根据原有的知识,我们没办法得到 V 1 ( X ) , V 2 ( Y ) V_1(X),V_2(Y) V1(X),V2(Y)的联合分布函数,那么我们可以将 V 1 → U 1 , V 2 → U 2 V_1\rightarrow U_1,V_2\rightarrow U_2 V1U1,V2U2,假设 U 1 , U 2 U_1,U_2 U1,U2服从正态分布,此时定义的copula为正态copula。在映射后,我们就会有现成的多元正态分布,就可以在研究 U 1 , U 2 U_1,U_2 U1,U2之间的关系之后,就可以间接研究 V 1 , V 2 V_1,V_2 V1,V2之间的关系。
在copula中的映射是指分位数与分位数之间的一一映射。假设 F , G F,G F,G分别是 V 1 , V 2 V_1,V_2 V1,V2的边际分布函数,那么映射方式为:
F ( v 1 ) = Q ( u 1 ) , G ( v 2 ) = Q ( u 2 ) F(v_1)=Q(u_1),G(v_2)=Q(u_2) F(v1)=Q(u1),G(v2)=Q(u2)
其中Q表示为 V 1 , V 2 V_1,V_2 V1,V2映射到的变量 U 1 , U 2 U_1,U_2 U1,U2的分布函数。例如 U 1 , u 2 U_1,u_2 U1,u2的边际分布服从正态分布,那么Q就是正态分布函数。以正态分布为例,我们有:
F ( v 1 ) = N ( u 1 ) , G ( v 2 ) = N ( u 2 ) F(v1)=N(u_1) ,G(v_2)=N(u_2) F(v1)=N(u1),G(v2)=N(u2)

copula函数和相依性
本节讨论copula函数是如何与秩相关以及尾部相关联系在一起的。
下述定理给出copula函数与秩相关系数之间的函数关系式:

定理
设X和Y是两个连续的随机变量,F,G分别是它们的边际分布函数,并且它们的copula函数为C,那么Kendall和Spearman秩相关系数分别为:
τ ( X , Y ) = 4 ∫ ∫ [ 0 , 1 ] 2 C ( F ( x ) , G ( y ) ) d C ( F ( x ) , G ( y ) ) − 1 = 4 E [ C ( F ( x ) , G ( y ) ) ] − 1 ϱ ( X , Y ) = 12 ∫ ∫ [ 0 , 1 ] 2 F ( x ) , G ( y ) d C ( F ( x ) , G ( y ) ) − 3 = 12 E [ F ( x ) , G ( y ) ] − 3 \tau(X,Y)=4\int\int_{[0,1]^2}C(F(x),G(y))dC(F(x),G(y))-1=4E[C(F(x),G(y))]-1\\ \varrho(X,Y)=12\int\int_{[0,1]^2}F(x),G(y)dC(F(x),G(y))-3=12E[F(x),G(y)]-3 τ(X,Y)=4[0,1]2C(F(x),G(y))dC(F(x),G(y))1=4E[C(F(x),G(y))]1ϱ(X,Y)=12[0,1]2F(x),G(y)dC(F(x),G(y))3=12E[F(x),G(y)]3

下面介绍尾部相依性如何通过copula函数来计算。尾部相依性可以分为上尾相依性以及下尾相依性,首先给出尾部相依性的定义:

def
上尾相依性 λ u = lim ⁡ q → 1 P ( Y > G Y − 1 ( q ) ∣ X > F x − 1 ( q ) ) \lambda_u=\lim_{q \to 1}P(Y>G^{-1}_{Y}(q)|X>F_x^{-1}(q)) λu=q1limP(Y>GY1(q)X>Fx1(q))
下尾相依性 λ l = lim ⁡ q → 0 P ( Y ≤ G Y − 1 ( q ) ∣ X ≤ F x − 1 ( q ) ) \lambda_l=\lim_{q \to 0}P(Y\le G^{-1}_{Y}(q)|X\le F_x^{-1}(q)) λl=q0limP(YGY1(q)XFx1(q))

若上尾相依性大于0,那么变量之间将存在上尾相依性;
如果下尾相依性大于0,那么变量之间将存在下尾相依性;
如果上尾相依性与下尾相依性均等于0,那么变量之间在尾部式渐进独立的。

下述定理给出尾部相依性如何利用copula函数来进行计算:

定理
设X和Y是两个连续的随机变量,并且它们的copula函数为C,那么它们的上尾相依性以及下尾相依性可由copula函数分别表示为:
λ u = 2 + lim ⁡ q ≤ 0 C ( 1 − q , 1 − q ) − 1 q λ l = lim ⁡ q ≤ 0 C ( q , q ) q \begin{aligned} \lambda_u &=2+\lim_{q\le 0}\frac{C(1-q,1-q)-1}{q}\\ \lambda_l &=\lim_{q\le 0}\frac{C(q,q)}{q} \end{aligned} λuλl=2+q0limqC(1q,1q)1=q0limqC(q,q)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山山而川ds

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值