PriorityQueue优先队列
代码:
//优先队列使用示例
Queue<Customer> customerPriorityQueue = new PriorityQueue<>(7, idComparator);
addDataToQueue(customerPriorityQueue);
pollDataFromQueue(customerPriorityQueue);
//匿名Comparator实现
public static Comparator<Customer> idComparator = new Comparator<Customer>(){
@Override
public int compare(Customer c1, Customer c2) {
return (int) (c1.getId() - c2.getId());
}
};
//用于往队列增加数据的通用方法
private static void addDataToQueue(Queue<Customer> customerPriorityQueue) {
Random rand = new Random();
for(int i=0; i<7; i++){
int id = rand.nextInt(100);
customerPriorityQueue.add(new Customer(id, "Pankaj "+id));
}
}
//用于从队列取数据的通用方法
private static void pollDataFromQueue(Queue<Customer> customerPriorityQueue) {
while(true){
Customer cust = customerPriorityQueue.poll();
if(cust == null) break;
System.out.println("Processing Customer with ID="+cust.getId());
}
}
输出:
Processing Customer with ID=6
Processing Customer with ID=20
Processing Customer with ID=24
Processing Customer with ID=28
Processing Customer with ID=29
Processing Customer with ID=82
Processing Customer with ID=96
最小的元素在队列的头部因而最先被取出。如果不实现Comparator,在建立customerPriorityQueue时会抛出ClassCastException。
原理:
Java中PriorityQueue通过堆结构在逻辑上是完全二叉树(任意一个非叶子节点的权值,都不大于其左右子节点的权值),物理存储上是数组,也就意味着可以通过数组来作为PriorityQueue的底层实现。
PriorityQueue是一种特殊的队列,满足队列的“队尾进、队头出”条件,但是每次插入或删除元素后,都对队列进行调整,使得队列始终构成最小堆(或最大堆)
PriorityQueue的内部,主要有以下结构属性构成:
//默认用于存储节点信息的数组的大小
private static final int DEFAULT_INITIAL_CAPACITY = 11;
//用于存储节点信息的数组
transient Object[] queue;
//数组中实际存放元素的个数
private int size = 0;
//Comparator比较器
private final Comparator<? super E> comparator;
//用于记录修改次数的变量
transient int modCount = 0;
leftNo = parentNo*2+1
rightNo = parentNo*2+2
parentNo = (nodeNo-1)/2
轻易计算出某个节点的父节点以及子节点的下标
方法剖析
add()和offer()
add(E e)
和offer(E e)
的语义相同,都是向优先队列中插入元素,前者在插入失败时抛出异常,后则则会返回false
新加入的元素可能会破坏小顶堆的性质,因此需要进行必要的调整。
//offer(E e)
public boolean offer(E e) {
if (e == null)//不允许放入null元素
throw new NullPointerException();
modCount++;
int i = size;
if (i >= queue.length)
grow(i + 1);//自动扩容
size = i + 1;
if (i == 0)//队列原来为空,这是插入的第一个元素
queue[0] = e;
else
siftUp(i, e);//调整
return true;
}
扩容函数grow()
类似于ArrayList
里的grow()
函数
siftUp(int k, E x)
方法,该方法用于插入元素x
并维持堆的特性。
//siftUp()
private void siftUp(int k, E x) {
while (k > 0) {
int parent = (k - 1) >>> 1;//parentNo = (nodeNo-1)/2
Object e = queue[parent];
if (comparator.compare(x, (E) e) >= 0)//调用比较器的比较方法
break;
queue[k] = e;
k = parent;
}
queue[k] = x;
}
从k
指定的位置开始,将x
逐层与当前点的parent
进行比较并交换,直到满足x >= queue[parent]
为止
element()和peek()
element()
和peek()
的语义完全相同,都是获取但不删除队首元素,区别为当方法失败时前者抛出异常,后者返回null
,直接返回数组0
下标处的那个元素即可
remove()和poll()
都是获取并删除队首元素,区别是当方法失败时**前者抛出异常,后者返回null**
。
public E poll() {
if (size == 0)
return null;
int s = --size;
modCount++;
E result = (E) queue[0];//0下标处的那个元素就是最小的那个
E x = (E) queue[s];
queue[s] = null;
if (s != 0)
siftDown(0, x);//调整
return result;
}
siftDown(int k, E x)方法,该方法的作用是从
k指定的位置开始,将
x逐层向下与当前点的左右孩子中较小的那个交换,直到
x`小于或等于左右孩子中的任何一个为止。
//siftDown()
private void siftDown(int k, E x) {
int half = size >>> 1;
while (k < half) {
//首先找到左右孩子中较小的那个,记录到c里,并用child记录其下标
int child = (k << 1) + 1;//leftNo = parentNo*2+1
Object c = queue[child];
int right = child + 1;
if (right < size &&
comparator.compare((E) c, (E) queue[right]) > 0)
c = queue[child = right];
if (comparator.compare(x, (E) c) <= 0)
break;
queue[k] = c;//然后用c取代原来的值
k = child;
}
queue[k] = x;
}
remove(Object o)
方法可以分为2种情况:
-
删除的是最后一个元素。直接删除即可,不需要调整。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DVGzvQAI-1632392528449)(C:\Users\涛大爷的笔记本\AppData\Roaming\Typora\typora-user-images\image-20210825231452572.png)]
-
删除的不是最后一个元素,是中间节点
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Mhlbs75Q-1632392528450)(C:\Users\涛大爷的笔记本\AppData\Roaming\Typora\typora-user-images\image-20210825232433776.png)]
现在假如我们需要删除5号节点,主要是三个步骤:
- 用最后一个元素替换将要被删除的元素并删除最后元素
- 判断该节点的值与其子节点中最小的值比较,如果小于最小值则维持堆结构,否则向下调整
- 判断该节点的值是否小于父节点的值,如果小于则向上调整,否则维持堆结构
第一步,用最后元素替换将要被删除的元素:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-AERBbvyp-1632392528451)(C:\Users\涛大爷的笔记本\AppData\Roaming\Typora\typora-user-images\image-20210825232444225.png)]
第二步,与子节点比较判断:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FNi1eoSN-1632392528452)(C:\Users\涛大爷的笔记本\AppData\Roaming\Typora\typora-user-images\image-20210825232453179.png)]
第三步,与父节点比较,满足条件,维持堆结构。