PriorityQueue优先队列(笔记九)

PriorityQueue优先队列

代码:

    //优先队列使用示例
 Queue<Customer> customerPriorityQueue = new PriorityQueue<>(7, idComparator);

    addDataToQueue(customerPriorityQueue);
      pollDataFromQueue(customerPriorityQueue);
 //匿名Comparator实现

public static Comparator<Customer> idComparator = new Comparator<Customer>(){
  @Override

    public int compare(Customer c1, Customer c2) {

        return (int) (c1.getId() - c2.getId());

    }

};
//用于往队列增加数据的通用方法

private static void addDataToQueue(Queue<Customer> customerPriorityQueue) {

    Random rand = new Random();

    for(int i=0; i<7; i++){

        int id = rand.nextInt(100);

        customerPriorityQueue.add(new Customer(id, "Pankaj "+id));

    }

}
//用于从队列取数据的通用方法

private static void pollDataFromQueue(Queue<Customer> customerPriorityQueue) {

    while(true){

        Customer cust = customerPriorityQueue.poll();

        if(cust == null) break;

        System.out.println("Processing Customer with ID="+cust.getId());

    }

}

输出:

Processing Customer with ID=6

Processing Customer with ID=20

Processing Customer with ID=24

Processing Customer with ID=28

Processing Customer with ID=29

Processing Customer with ID=82

Processing Customer with ID=96

最小的元素在队列的头部因而最先被取出。如果不实现Comparator,在建立customerPriorityQueue时会抛出ClassCastException。

原理:

Java中PriorityQueue通过堆结构在逻辑上完全二叉树(任意一个非叶子节点的权值,都不大于其左右子节点的权值),物理存储上是数组,也就意味着可以通过数组来作为PriorityQueue的底层实现

PriorityQueue是一种特殊的队列,满足队列的“队尾进、队头出”条件,但是每次插入或删除元素后,都对队列进行调整,使得队列始终构成最小堆(或最大堆)

PriorityQueue的内部,主要有以下结构属性构成:

//默认用于存储节点信息的数组的大小
private static final int DEFAULT_INITIAL_CAPACITY = 11;
//用于存储节点信息的数组
transient Object[] queue;
//数组中实际存放元素的个数
private int size = 0;
//Comparator比较器
private final Comparator<? super E> comparator;
//用于记录修改次数的变量
transient int modCount = 0;

PriorityQueue_base.png

leftNo = parentNo*2+1
rightNo = parentNo*2+2
parentNo = (nodeNo-1)/2
轻易计算出某个节点的父节点以及子节点的下标

方法剖析

add()和offer()

add(E e)offer(E e)的语义相同,都是向优先队列中插入元素,前者在插入失败时抛出异常,后则则会返回false

PriorityQueue_offer.png

新加入的元素可能会破坏小顶堆的性质,因此需要进行必要的调整。

//offer(E e)
public boolean offer(E e) {
if (e == null)//不允许放入null元素
throw new NullPointerException();
modCount++;
int i = size;
if (i >= queue.length)
grow(i + 1);//自动扩容
size = i + 1;
if (i == 0)//队列原来为空,这是插入的第一个元素
queue[0] = e;
else
siftUp(i, e);//调整
return true;
}

扩容函数grow()类似于ArrayList里的grow()函数

siftUp(int k, E x)方法,该方法用于插入元素x并维持堆的特性。

//siftUp()
private void siftUp(int k, E x) {
while (k > 0) {
int parent = (k - 1) >>> 1;//parentNo = (nodeNo-1)/2
Object e = queue[parent];
if (comparator.compare(x, (E) e) >= 0)//调用比较器的比较方法
break;
queue[k] = e;
k = parent;
}
queue[k] = x;
}

k指定的位置开始,将x逐层与当前点的parent进行比较并交换,直到满足x >= queue[parent]为止

element()和peek()

element()peek()的语义完全相同,都是获取但不删除队首元素,区别为当方法失败时前者抛出异常,后者返回null直接返回数组0下标处的那个元素即可

PriorityQueue_peek.png

remove()和poll()

都是获取并删除队首元素,区别是当方法失败时**前者抛出异常,后者返回null**

PriorityQueue_poll.png

public E poll() {
if (size == 0)
return null;
int s = --size;
modCount++;
E result = (E) queue[0];//0下标处的那个元素就是最小的那个
E x = (E) queue[s];
queue[s] = null;
if (s != 0)
siftDown(0, x);//调整
return result;
}

siftDown(int k, E x)方法,该方法的作用是从k指定的位置开始,将x逐层向下与当前点的左右孩子中较小的那个交换,直到x`小于或等于左右孩子中的任何一个为止

//siftDown()
private void siftDown(int k, E x) {
int half = size >>> 1;
while (k < half) {
//首先找到左右孩子中较小的那个,记录到c里,并用child记录其下标
int child = (k << 1) + 1;//leftNo = parentNo*2+1
Object c = queue[child];
int right = child + 1;
if (right < size &&
comparator.compare((E) c, (E) queue[right]) > 0)
c = queue[child = right];
if (comparator.compare(x, (E) c) <= 0)
break;
queue[k] = c;//然后用c取代原来的值
k = child;
}
queue[k] = x;
}

remove(Object o)方法可以分为2种情况:

  1. 删除的是最后一个元素。直接删除即可,不需要调整。

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DVGzvQAI-1632392528449)(C:\Users\涛大爷的笔记本\AppData\Roaming\Typora\typora-user-images\image-20210825231452572.png)]

  2. 删除的不是最后一个元素,是中间节点

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Mhlbs75Q-1632392528450)(C:\Users\涛大爷的笔记本\AppData\Roaming\Typora\typora-user-images\image-20210825232433776.png)]

现在假如我们需要删除5号节点,主要是三个步骤:

  • 用最后一个元素替换将要被删除的元素并删除最后元素
  • 判断该节点的值与其子节点中最小的值比较,如果小于最小值则维持堆结构,否则向下调整
  • 判断该节点的值是否小于父节点的值,如果小于则向上调整,否则维持堆结构

第一步,用最后元素替换将要被删除的元素:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-AERBbvyp-1632392528451)(C:\Users\涛大爷的笔记本\AppData\Roaming\Typora\typora-user-images\image-20210825232444225.png)]

第二步,与子节点比较判断:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FNi1eoSN-1632392528452)(C:\Users\涛大爷的笔记本\AppData\Roaming\Typora\typora-user-images\image-20210825232453179.png)]

第三步,与父节点比较,满足条件,维持堆结构。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值