B站教程地址
https://www.bilibili.com/video/BV18b4y1J7a6/
学习人工智能的意义
近些年来,人工智能技术迅速发展,已经在多个领域取得了实质性的突破,也有了众多工业内的应用,新能源汽车的自动驾驶、路面交通的违章识别、每日打卡的人脸识别、大数据的智能化搜索以及文字的提取翻译等等,都使用了人工智能技术。其中,计算机视觉是人工智能的重要组成部分,以往使用传统技术很难攻克的难题,都被人工智能技术一一化解,可以说人工智能推动了整个计算机视觉领域的发展,是一种非常强大的技术手段。
这么强大的技术,我们学习它究竟有什么意义呢?
- 结合我自身的切身感受来说,在本科阶段,我自己也参加了很多的学生实验室和科创比赛,越来越多的比赛会涉及到计算机视觉的技术。对于综合类比赛,例如互联网+、挑战杯、创青春等,很多的参赛队伍都使用到了人工智能,作为一大创新点,在比赛中脱颖而出;对于专业类比赛,例如软件杯、robcup,甚至是今年的电子设计竞赛等等,也涉及了很多计算机视觉方面的要求,比如说识别一些特征物体,识别一些数字,或者垃圾分类,这些硬性的题目要求,如果对于计算机视觉不是很了解,那做起来就会非常困难。
- 对于发表论文的研究生学长学姐,可以看到现在很多的交叉学科,都在将计算机视觉和相关专业进行融合,借助视觉这种新的技术手段,对专业内的一些问题提出新的解决方法和思路,举个简单的例子,就我们电气专业来说,可以使用计算机视觉的方法监视绝缘子老化的情况,以往呢可能需要使用一些传感器或者是其他的手段。
开发平台
目前,人工智能的开发平台有很多,国外的平台有torch、tensorflow、keras等,国内平台有百度的paddle等,每个开发平台都有各自的特点。本期教程是以百度的paddle平台为例,版本为2.0以上的动态图版本,和pytorch的用法是非常相似的,学完本期的教程,也基本学完了pytorch的用法。
现在已经有了很多非常优秀的深度学习教程,本期教程是以实际应用为主,对于原理部分也会做一些简单的介绍,更多地是为了解决问题,实现相应的功能,能够让同学们快速地入门深度学习,也是我自己对本科阶段学习计算机视觉的回顾和总结。
教程里不包括python基础语法的讲解,也不包括numpy,opencv这些基础视觉工具库的讲解,需要同学们自己预先的学习,希望这门教程对大家有所帮助和启发。