【深度学习入门】基于PaddleX的驾驶员状态识别和Paddle-Lite部署

本文介绍了使用PaddleX和Paddle-Lite完成驾驶员状态识别项目,训练MobileNetV3模型达到0.979准确率。详细探讨了MobileNetV3的结构优化,包括DW Conv、PW Conv、h-swish函数等,并展示了如何利用PaddleLite进行模型压缩和量化部署。
摘要由CSDN通过智能技术生成

项目简介:

该项目使用PaddleX提供的图像分类模型,在 kaggle 驾驶员状态检测数据集进行训练;

训练得到的模型能够区分驾驶员正常驾驶、打电话、喝水等等不同动作,准确率为0.979;

并使用PaddleLite进行模型的量化和压缩;

该项目使用CPU环境或GPU环境运行,PaddleX会自动选择合适的环境;

目录:

  1. PaddleX工具简介;
  2. 数据集简介;
  3. 定义数据加载器;
  4. 定义并训练模型;
  5. 评估模型性能;
  6. 使用PaddleLite进行模型压缩;
  7. 总结

一、PaddleX 工具简介:

PaddleX简介

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT可达鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值