SARIMAX

SARIMAX(Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors)模型是一种广泛应用于时间序列分析的方法,结合了季节性、自回归、差分和移动平均四个要素,并能引入外部解释变量。本文将详细介绍SARIMAX的原理,如何构建模型,以及在实际问题中的应用案例,帮助读者理解并掌握这一统计工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入代# -*- coding: utf-8 -*-
"""
Created on Sun Oct 27 21:18:18 2019

@author: LIUJi
"""

from __future__ import print_function
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pylab import rcParams
import warnings
warnings.filterwarnings('ignore')
import seaborn as sns
sns.set(font='IPAGothic')
import statsmodels.api as sm
from statsmodels.tsa.seasonal import seasonal_decompose
from pyramid.arima import auto_arima
rcParams['figure.figsize'] = 30,10#定义图像大小
rcParams["font.size"]=30


data = pd.read_excel
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值