小三芯线缆焊接

小三芯一般为立体声非平衡接头,和大三芯(单声道平衡接头)不一样

大三芯和卡侬头都是单声道平衡接头,因为这两种头所连接的调音台、终端等设备接口都是单声道,小三芯连接的是电脑、手机等立体声插孔

下图为正确的焊接方法,立体声接法(大三芯、莲花头、卡侬头同理)


可能存在的问题

1.小三芯——凤凰头

凤凰插三芯,其中一芯是独立的屏蔽层,不参与信号传输,剩下两芯可以去对应传统左右声道中某一个声道的两芯。

2.个人实践证明,小三芯焊接时,小三芯接头正常红、白接+、-,对端偶尔可以红白绕在一起焊接,例如小三芯——两个莲花头——两个莲花头的信号线都绕接红白,正常接地。(但可能这种接法更通用可靠)

如果左右声道焊线在一起,左右声道的公共部分(如人声和低频)是没有电位差的,会产生低频和人声基本消失。 

用小三芯一一对接卡侬,在卡侬输出时右声道极性翻转和左声道叠加,抵消了相同的部分,通常左右声道中都有人声,抵消了就没了。


注意事项

1.小三芯——大三芯转接头

会将立体声转成单声道,连接设备时可能出现上述 信号抵消问题

2.双声道与平衡非平衡接法没有关联


为什么3.5mm的耳机在听歌时候插一半或接触不良时候会自动消除人声?

人声通常是单声道拾音,然后平均分配到两个通道的。

这样,左右声道的人声就是相位相同切幅度相同,那此时它们之间的差分电压就是0。

当耳机稍微退出一点时,耳机的地线(公共端)可能没有接触,这样左右耳机就形成了串联连接,并且直接这样接到了左右声道的输出端上,而此时人声在左右声道的差分电压为0,所以人声被“消“掉了。

而其它配乐本来就是多声道拾音,收到的信号多少都会有些差异,最终在左右声道呈现的差分也就不会是0,所以这些声音仍旧可以被听到。

好的,我了解了你的问题。关于利用 Python + OpenCV 识别片中的圆形(霍夫变换),我可以给你一些详细的解释和代码示例。 首先,我们需要导入 OpenCV 库和 NumPy 库。这里需要注意的是,需要安装正确的 OpenCV 版本,否则可能会出现一些问题。 ```python import cv2 import numpy as np ``` 接下来,我们需要读取片并将其换为灰度像。然后,我们可以对灰度像进行高斯模糊处理,以减少噪声。这里的高斯核大小可以根据实际情况进行调整。 ```python img = cv2.imread('image.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (5, 5), 0) ``` 接着,我们可以使用霍夫变换检测圆形。这里需要注意的是,需要设置最小半径和最大半径的范围,以及检测圆形的参数阈值。这些参数的设置也需要根据实际情况进行调整。 ```python circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 100, param1=100, param2=30, minRadius=0, maxRadius=0) ``` 最后,我们可以将检测到的圆形标记出来,并显示片。 ```python if circles is not None: circles = np.round(circles[0, :]).astype("int") for (x, y, r) in circles: cv2.circle(img, (x, y), r, (0, 255, 0), 2) cv2.imshow("Image", img) cv2.waitKey(0) ``` 完整代码如下: ```python import cv2 import numpy as np img = cv2.imread('image.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (5, 5), 0) circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 100, param1=100, param2=30, minRadius=0, maxRadius=0) if circles is not None: circles = np.round(circles[0, :]).astype("int") for (x, y, r) in circles: cv2.circle(img, (x, y), r, (0, 255, 0), 2) cv2.imshow("Image", img) cv2.waitKey(0) ``` 希望这个代码示例能对你有所帮助!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值