Birthday Gift(排序&后缀数组)
思路:排序+后缀数组的好题。要求 m i n ( x a + y b , x b + y a ) min(x_a+y_b,x_b+y_a) min(xa+yb,xb+ya).根据 x , y x,y x,y的对称性,不妨令最小值为 x a + y b x_a+y_b xa+yb。
所以 x a + y b ≤ x b + y a → x a − x b ≤ y a − y b 。 x_a+y_b\leq x_b+y_a\rightarrow x_a-x_b\leq y_a-y_b。 xa+yb≤xb+ya→xa−xb≤ya−yb。
所以对于每个 x x x,我们只需要找到最大的 y b y_b yb即可。所以我们可以先按照这种方式排序,然后用一个后缀数组维护最大值。事实上用一个数来保存最大值也可以。
时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+5;
#define mst(a) memset(a,0,sizeof a)
struct p{
int x,y;
bool operator <(const p &a )const{
return x-y<a.x-a.y;
}
}a[N];
int suf[N];
int main(){
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i].x);
}
for(int i=1;i<=n;i++)
scanf("%d",&a[i].y);
sort(a+1,a+n+1);
for(int i=n;i>=1;i--)
suf[i]=max(suf[i+1],a[i].y);
int ans=0;
for(int i=1;i<n;i++)
ans=max(ans,a[i].x+suf[i+1]);
printf("%d\n",ans);
return 0;
}