pytorch预训练模型加载与使用(以AlexNet为例)

该博客介绍了如何在PyTorch中使用预训练模型AlexNet进行深度学习任务,包括加载模型、数据预处理、模型调整、训练与测试,并提供了完整的代码示例。通过对原始模型的最后一层全连接层进行调整以适应120个类别,并使用Adam优化器进行训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本文主要是提供过程,不要在意结果。

1. 概况

pytorch 中有许多已经训练好的模型提供给我们使用,一下以AlexNet为例说明pytorch中的模型怎么用。
如下:

import torchvision.models as models


# pretrained=True:加载网络结构和预训练参数
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
squeezenet = models.squeezenet1_0(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True)
inception = models.inception_v3(pretrained=True)
googlenet = models.googlenet(pretrained=True)
shufflenet = models.shufflenet_v2_x1_0(pretrained=True)
mobilenet_v2 = models.mobilenet_v2(pretrained=True)
mobilenet_v3_large = models.mobilenet_v3_large(pretrained=True)
mobilenet_v3_small = models.mobilenet_v3_small(pretrained=True)
resnext50_32x4d = models.resnext50_32x4d(pretrained=True)
wide_resnet50_2 = models.wide_resnet50_2(pretrained=True)
mnasnet = models.mnasnet1_0(pretrained=True)


数据来源:请点击我
也可以在CSDN中下载:请点击我

2. 代码讲解

2.1 加载必要的包

import os.path
from os import listdir
import numpy as np
import pandas as pd
from PIL import Image
import torch
from torch.utils.data.sampler import SubsetRandomSampler
from torch.utils.data import Dataset
import torchvision.transforms as transforms
from sklearn.model_selection import train_test_split
import torch.nn
import torchvision.models as models  # 模型都在这里

2.2 设置GPU和transform

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
normalize = transforms.Normalize(
   mean=[0.485, 0.456, 0.406],
   std=[0.229, 0.224, 0.225]
)
transform = transforms.Compose([transforms.ToTensor(), normalize])  # 转换

2.3 数据预处理

# img_paths:图片路径;img_labels:图片标签;size_of_images:图片大小
class DogDataset(Dataset):
    def __init__(self, img_paths, img_labels, size_of_images):
        self.img_paths = img_paths
        self.img_labels = img_labels
        self.size_of_images = size_of_images

    def __len__(self):
        return len(self.img_paths)

    def __getitem__(self, index):
        PIL_IMAGE = Image.open(self.img_paths[index]).resize(self.size_of_images)
        TENSOR_IMAGE = transform(PIL_IMAGE)
        label = self.img_labels[index]
        return TENSOR_IMAGE, label


print(len(listdir(r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\train')))
print(len(pd.read_csv(r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\labels.csv')))
print(len(listdir(r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\test')))

train_paths = []
test_paths = []
labels = []

train_paths_lir = r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\train'
for path in listdir(train_paths_lir):
    train_paths.append(os.path.join(train_paths_lir, path))

labels_data = pd.read_csv(r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\labels.csv')
labels_data = pd.DataFrame(labels_data)

# 把字符标签离散化,因为数据有120种狗,不离散化后面把数据给模型时会报错:字符标签过多。把字符标签从0-119编号
size_mapping = {}
value = 0
# print(len(labels_data['breed'].value_counts()))
# print(labels_data['breed'].value_counts())
size_mapping = dict(labels_data['breed'].value_counts())
for kay in size_mapping:
    size_mapping[kay] = value
    value += 1
labels = labels_data['breed'].map(size_mapping)
labels = list(labels)
print(len(labels))
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(train_paths, labels, test_size=0.2)
# X_train:数据,y_train:数据标签,(224, 224):重新定义图片大小
train_set = DogDataset(X_train, y_train, (224, 224))  
test_set = DogDataset(X_test, y_test, (224, 224))
# 批量归一化
train_loader = torch.utils.data.DataLoader(train_set, batch_size=64)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=64)

2.4 引入模型

# 引入预训练好的模型模型
alexnet = models.alexnet(pretrained=True)
# 修改最后一层全连接层输出的种类:120
num_fc = alexnet.classifier[6].in_features
alexnet.classifier[6] = torch.nn.Linear(in_features=num_fc, out_features=120)
alexnet = alexnet.to(device)
# 对于模型的每个权重,使其不进行反向传播,即固定参数
for param in alexnet.parameters():
    param.requires_grad = False
# 但是参数全部固定了,也没法进行学习,所以我们不固定最后一层,即全连接层
for param in alexnet.classifier[6].parameters():
    param.requires_grad = True
# 定义自己的优化器
criterion = torch.nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.Adam(alexnet.parameters(), lr=0.001)

2.5 训练模型

def train(epoch):
    alexnet.train()
    epoch_loss = 0.0
    correct = 0.0

    for data, label in train_loader:
        data = data.to(device)
        label = label.to(device)
        train_output = alexnet(data)
        loss = criterion(train_output, label)
        epoch_loss = epoch_loss + loss
        pred = torch.max(train_output, 1)[1]
        train_correct = (pred == label).sum()
        correct += train_correct.item()
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print('Epoch: ', epoch, 'Train_loss: ', epoch_loss / len(train_set), 'Train acc: ', correct / len(train_set))

2.6 测试模型

def test():
    alexnet.eval()
    correct = 0.0
    test_loss = 0.0
    for data, label in test_loader:
        data = data.to(device)
        label = label.to(device)
        test_out = alexnet(data)
        loss = criterion(test_out, label)
        test_loss = test_loss + loss.item()
        pred = torch.max(test_out, 1)[1]
        test_correct = (pred == label).sum()
        correct = correct + test_correct.item()
    print('Test_loss: ', test_loss / len(test_set), 'Test acc: ', correct / len(test_set))

2.7 保存模型

PATH = r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Project'
torch.save(alexnet, PATH)

3. 完整代码

import os.path
from os import listdir
import numpy as np
import pandas as pd
from PIL import Image
import torch
from torch.utils.data.sampler import SubsetRandomSampler
from torch.utils.data import Dataset
import torchvision.transforms as transforms
from sklearn.model_selection import train_test_split
import torch.nn
import torchvision.models as models


device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
normalize = transforms.Normalize(
   mean=[0.485, 0.456, 0.406],
   std=[0.229, 0.224, 0.225]
)
transform = transforms.Compose([transforms.ToTensor(), normalize])  # 转换


class DogDataset(Dataset):
    def __init__(self, img_paths, img_labels, size_of_images):
        self.img_paths = img_paths
        self.img_labels = img_labels
        self.size_of_images = size_of_images

    def __len__(self):
        return len(self.img_paths)

    def __getitem__(self, index):
        PIL_IMAGE = Image.open(self.img_paths[index]).resize(self.size_of_images)
        TENSOR_IMAGE = transform(PIL_IMAGE)
        label = self.img_labels[index]
        return TENSOR_IMAGE, label


print(len(listdir(r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\train')))
print(len(pd.read_csv(r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\labels.csv')))
print(len(listdir(r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\test')))

train_paths = []
test_paths = []
labels = []

train_paths_lir = r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\train'
for path in listdir(train_paths_lir):
    train_paths.append(os.path.join(train_paths_lir, path))

labels_data = pd.read_csv(r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\labels.csv')
labels_data = pd.DataFrame(labels_data)

size_mapping = {}
value = 0
size_mapping = dict(labels_data['breed'].value_counts())
for kay in size_mapping:
    size_mapping[kay] = value
    value += 1
labels = labels_data['breed'].map(size_mapping)
labels = list(labels)
# print(labels)
print(len(labels))

X_train, X_test, y_train, y_test = train_test_split(train_paths, labels, test_size=0.2)
'''print(len(X_train))
print(len(y_train))'''

train_set = DogDataset(X_train, y_train, (224, 224))
test_set = DogDataset(X_test, y_test, (224, 224))

train_loader = torch.utils.data.DataLoader(train_set, batch_size=64)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=64)
# 引入预训练好的模型模型
alexnet = models.alexnet(pretrained=True)
num_fc = alexnet.classifier[6].in_features
alexnet.classifier[6] = torch.nn.Linear(in_features=num_fc, out_features=120)
alexnet = alexnet.to(device)
# 对于模型的每个权重,使其不进行反向传播,即固定参数
for param in alexnet.parameters():
    param.requires_grad = False
# 但是参数全部固定了,也没法进行学习,所以我们不固定最后一层,即全连接层
for param in alexnet.classifier[6].parameters():
    param.requires_grad = True
# 定义自己的优化器
criterion = torch.nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.Adam(alexnet.parameters(), lr=0.001)

def train(epoch):
    alexnet.train()
    epoch_loss = 0.0
    correct = 0.0

    for data, label in train_loader:
        data = data.to(device)
        label = label.to(device)
        train_output = alexnet(data)
        loss = criterion(train_output, label)
        epoch_loss = epoch_loss + loss
        pred = torch.max(train_output, 1)[1]
        train_correct = (pred == label).sum()
        correct += train_correct.item()
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print('Epoch: ', epoch, 'Train_loss: ', epoch_loss / len(train_set), 'Train correct: ', correct / len(train_set))

def test():
    alexnet.eval()
    correct = 0.0
    test_loss = 0.0
    for data, label in test_loader:
        data = data.to(device)
        label = label.to(device)
        test_out = alexnet(data)
        loss = criterion(test_out, label)
        test_loss = test_loss + loss.item()
        pred = torch.max(test_out, 1)[1]
        test_correct = (pred == label).sum()
        correct = correct + test_correct.item()
    print('Test_loss: ', test_loss / len(test_set), 'Test correct: ', correct / len(test_set))


epoch = 5
for n_epoch in range(epoch):
    train(n_epoch)
test()

# 保存模型
PATH = r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Project'
torch.save(alexnet, PATH)

4. 结果

在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值