【朝花夕拾系列一】信号与系统(奥本海姆)第三章

第二章中我们将信号表示为一系列基础信号的线性组合,并由此导出了卷积的概念。第三章中,我们用复指数 (complex exponentials) 来表示信号,即傅里叶级数(Fourier series)。如果LTI系统的输入是复指数,那么它的输出也将是一个具有同样形式的复指数,只不过有一个幅度上的差异,即
e s t → H ( s ) e s t e^{st}\rarr{H(s)e^{st}} estH(s)est z n → H ( z ) z n z^{n}\rarr{H(z)z^{n}} znH(z)zn其中s, z是复数。与线性代数中的定义相似,A是系统,x是输入,
A x = λ x Ax=\lambda{x} Ax=λx该输入被称为系统的特征方程(eigenfunction),复幅度 H ( z ) , H ( z ) H(z),H(z) H(z)H(z)被称为系统的特征值(eigenvalue)。

可以证明,如果输入是复指数的线性组合,那么输出也是同样形式的复指数的线性组合。

连续时间傅里叶级数

由第一章的讨论可知,复指数的谐波分量 (harmonic components) ϕ k ( t ) = e j k ( 2 π / T ) t \phi_k(t)=e^{jk(2\pi/T)t} ϕk(t)=ejk(2π/T)t 的周期都是T(尽管T不是基本周期),所以这些谐波分量的线性组合
x ( t ) = ∑ k a k e j k ( 2 π / T ) t x(t)=\sum_{k}a_ke^{jk(2\pi/T)t} x(t)=kakejk(2π/T)t周期也是T。上式被称为周期信号的傅里叶级数展开式

实周期信号的傅里叶级数展开式的其他形式:
x ( t ) = a 0 + 2 ∑ k = 1 ∞ A k cos ⁡ ( k ω 0 t + θ k ) x(t)=a_0+2\sum_{k=1}^{\infin}A_k\cos(k\omega_0t+\theta_k) x(t)=a0+2k=1Akcos(kω0t+θk)
x ( t ) = a 0 + 2 ∑ k = 1 ∞ ( B k cos ⁡ k ω 0 t − C k sin ⁡ k ω 0 t ) x(t)=a_0+2\sum_{k=1}^{\infin}(B_k\cos{k\omega_0t}-C_k\sin{k\omega_0t}) x(t)=a0+2k=1(Bkcoskω0tCksinkω0t)
其中 A k , B k , C k A_k, B_k, C_k Ak,Bk,Ck 都是实数。

连续时间傅里叶级数系数的确定

将等式 x ( t ) = ∑ k a k e j k ( 2 π / T ) t x(t)=\sum_{k}a_ke^{jk(2\pi/T)t} x(t)=kakejk(2π/T)t两边同时乘 e − j n ω 0 t e^{-jn\omega_0t} ejnω0t,对t积分。由于只有在k=n时, ∫ T e j ( k − n ) ω 0 t d t = T \int_{T}e^{j(k-n)\omega_0{t}}dt=T Tej(kn)ω0tdt=T,其余时刻均为0,所以有 a n = 1 T ∫ T x ( t ) e − j n ω 0 t d t a_n=\frac{1}{T}\int_{T}x(t)e^{-jn\omega_0{t}}dt an=T1Tx(t)ejnω0tdt该系数称为傅里叶级数系数(Fourier series coefficients)或谱系数(spectral coefficients)。信号的傅里叶展开式为
x ( t ) = ∑ k = − ∞ ∞ a k e j k ω 0 t x(t)=\sum_{k=-\infin}^{\infin}a_ke^{jk\omega_0t} x(t)=k=akejkω0t

傅里叶级数的敛散性

  1. 两类一定可以用傅里叶系数表示的信号(表示出来零误差)
    (1) ∫ T ∣ x ( t ) ∣ 2 d t < ∞ \int_{T}|x(t)|^2dt<\infin Tx(t)2dt<该式可以保证求出的 a k a_k ak是一个有限的数值
    (2)信号满足狄利克雷条件(Dirichlet conditions):
    条件1:任何所选中的周期中,信号都是绝对可积(absolutely integrable)的,即 ∫ T ∣ x ( t ) ∣ 2 d t < ∞ \int_{T}|x(t)|^2dt<\infin Tx(t)2dt<
    条件2:在任一周期内,信号只有有限多个最大值和最小值
    条件3:在有限的时间间隔内,间断点的个数是有限的

连续时间傅里叶级数的性质

  1. 线性
    如果 x ( t ) ← → a k x(t)\larr\rarr{a_k} x(t)←→ak y ( t ) ← → b k y(t)\larr\rarr{b_k} y(t)←→bk
    那么 x ( t ) + y ( t ) ← → a k + b k x(t)+y(t)\larr\rarr{a_k+b_k} x(t)+y(t)←→ak+bk
  2. 时间平移
    如果
    x ( t ) ← → a k x(t)\larr\rarr{a_k} x(t)←→ak
    那么 x ( t − t 0 ) ← → a k e − j ω 0 t 0 x(t-t_0)\larr\rarr{a_ke^{-j\omega_0t_0}} x(tt0)←→akejω0t0
  3. 时间翻转
    如果
    x ( t ) ← → a k x(t)\larr\rarr{a_k} x(t)←→ak
    那么 x ( − t ) ← → − a k x(-t)\larr\rarr{-a_k} x(t)←→ak
    也就是说,傅里叶级数的奇偶性与信号的奇偶性一致
  4. 尺度变换
    x ( a t ) = ∑ k = − ∞ + ∞ a k e j k ( a ω 0 ) t x(at)=\sum_{k=-\infin}^{+\infin}a_ke^{jk(a\omega_0)t} x(at)=k=+akejk(aω0)t也就是说,傅里叶系数不变,基频变化。
  5. 乘法
    如果 x ( t ) ← → a k x(t)\larr\rarr{a_k} x(t)←→ak y ( t ) ← → b k y(t)\larr\rarr{b_k} y(t)←→bk
    那么 x ( t ) y ( t ) ← → ∑ l = − ∞ + ∞ a l b k − l x(t)y(t)\larr\rarr{\sum_{l=-\infin}^{+\infin}a_lb_{k-l}} x(t)y(t)←→l=+albkl
  6. 共轭对称性
    如果 x ( t ) ← → a k x(t)\larr\rarr{a_k} x(t)←→ak
    那么 x ∗ ( t ) ← → a − k ∗ x^*(t)\larr\rarr{a^*_{-k}} x(t)←→ak
  7. 连续周期信号的帕斯瓦尔定理
    1 T ∫ T ∣ x ( t ) ∣ 2 d t = ∑ k = − ∞ + ∞ ∣ a k ∣ 2 \frac{1}{T}\int_{T}|x(t)|^2dt=\sum_{k=-\infin}^{+\infin}|a_k|^2 T1Tx(t)2dt=k=+ak2

离散时间傅里叶级数

与连续时间傅里叶级数不同,离散时间傅里叶级数的长度是有限的。这是因为离散时间复指数也是周期的,所以仅使用一个周期就可以表示原信号。这个性质是连续时间复指数不具备的。

将信号写成傅里叶级数展开形式: x [ n ] = ∑ k = < N > a k e j k ω 0 t x[n]=\sum_{k=<N>}a_ke^{jk\omega_0t} x[n]=k=<N>akejkω0t类似地,可以得到傅里叶系数 a k = 1 N ∑ n = < N > x [ n ] e − j k ω 0 n a_k=\frac{1}{N}\sum_{n=<N>}x[n]e^{-jk\omega_0n} ak=N1n=<N>x[n]ejkω0n由于离散时间复指数的周期性,可知 a k = a k + N a_k=a_{k+N} ak=ak+N

傅里叶级数和LTI系统

对于线性时不变系统来说,它的响应可以看做复指数的线性组合,连续时间系统的系统函数为 H ( s ) = ∫ − ∞ + ∞ h ( τ ) e − s τ d τ H(s)=\int_{-\infin}^{+\infin}h(\tau)e^{-s\tau}d\tau H(s)=+h(τ)esτdτ
如果s是纯虚数,即 s = j ω s=j\omega s=,那么上式化为 H ( j ω ) = ∫ − ∞ + ∞ h ( t ) e − j ω t d t H(j\omega)=\int_{-\infin}^{+\infin}h(t)e^{-j\omega t}dt H()=+h(t)etdt该式被称为系统的频率响应(frequency response)。

类似地,在离散时间系统中,系统函数
H ( z ) = ∑ k = − ∞ + ∞ h [ k ] z − k H(z)=\sum_{k=-\infin}^{+\infin}h[k]z^{-k} H(z)=k=+h[k]zk可化为 H ( e j ω ) = ∑ n = − ∞ + ∞ h [ n ] e − j ω n H(e^{j\omega})=\sum_{n=-\infin}^{+\infin}h[n]e^{-j\omega n} H(e)=n=+h[n]ejωn

滤波

滤波:改变一个信号中某些频率分量的相对幅度,或者完全抑制掉某些频率分量。

  1. 频率整形滤波器(frequency-shaping filter)
    由LTI系统实现。
  2. 频率选择滤波器(frequency-selective filter)
    用于精确或大约地选择一些频率带(通带)并且抑制其他频率带(阻带)。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dccishere

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值