【朝花夕拾系列一】信号与系统(奥本海姆)第二章

不得不说,这本书的课后题出的真是一绝,可以帮助补全很多理解的漏洞。花了两天时间做完第一章的课后题,发现了一些有意思的小题目,比如1.26(c),1.27(g),1.35,1.38(a),1.42(c),1.44。

卷积

离散LTI系统中的卷积和 (convolution sum)

LTI (linear time-invariance) 系统:线性时不变系统。

任意一个信号都可以写成单位冲激信号的时移加权求和的形式,即离散时间单位冲激信号的筛选特性 (sifting property):
x [ n ] = ∑ k = − ∞ + ∞ x [ k ] δ [ n − k ] x[n]=\sum_{k=-\infin}^{+\infin}x[k]\delta[n-k] x[n]=k=+x[k]δ[nk]
相似地,如果一个LTI系统在单位冲激信号 δ [ n − k ] \delta[n-k] δ[nk] 的激励下的输出是 h k [ n ] h_k[n] hk[n],即 δ [ n − k ] → h k [ n ] \delta[n-k]\rarr{h_k[n]} δ[nk]hk[n] ,那么根据叠加性,得到卷积和
y [ n ] = ∑ k = − ∞ + ∞ x [ k ] h k [ n ] = ∑ k = − ∞ + ∞ x [ k ] h [ n − k ] y[n]=\sum_{k=-\infin}^{+\infin}x[k]h_k[n]=\sum_{k=-\infin}^{+\infin}x[k]h[n-k] y[n]=k=+x[k]hk[n]=k=+x[k]h[nk]
,也写作 y [ n ] = x [ n ] ∗ h [ n ] y[n]=x[n]*h[n] y[n]=x[n]h[n]其中 h [ n ] h[n] h[n]单位冲激响应 (unit impulse response)。值得注意的是,书中图2.2给出的系统是时变的,因为不满足 h k [ n ] = h [ n − n 0 ] h_k[n]=h[n-n_0] hk[n]=h[nn0]

连续LTI系统中的卷积积分 (convolution integral)

模仿离散时间的情况写出 x ( t ) = ∫ − ∞ + ∞ x ( τ ) δ ( t − τ ) d τ x(t)=\int_{-\infin}^{+\infin}x(\tau)\delta(t-\tau)d\tau x(t)=+x(τ)δ(tτ)dτ如果 h ( t ) h(t) h(t) 是LTI系统的单位脉冲响应,则对于任意输入 x ( t ) x(t) x(t),输出为卷积积分 y ( t ) = ∫ − ∞ + ∞ x ( τ ) h ( t − τ ) d τ y(t)=\int_{-\infin}^{+\infin}x(\tau)h(t-\tau)d\tau y(t)=+x(τ)h(tτ)dτ写作 y ( t ) = x ( t ) ∗ h ( t ) y(t)=x(t)*h(t) y(t)=x(t)h(t)

h ( t ) , h [ n ] h(t), h[n] h(t),h[n]的计算方法:
δ ( t ) , δ [ n ] \delta(t), \delta[n] δ(t),δ[n]代入 x ( t ) , x [ n ] x(t), x[n] x(t),x[n],求出的 y ( t ) , y [ n ] y(t), y[n] y(t),y[n]就是单位冲激响应 h ( t ) , h [ n ] h(t), h[n] h(t),h[n]

LTI系统的性质

LTI系统的性质完全由单位脉冲响应 h ( t ) h(t) h(t) 决定。

  1. 交换律 (the commutative property)
    x [ n ] ∗ h [ n ] = h [ n ] ∗ x [ n ] = ∑ k = − ∞ + ∞ x [ k ] h [ n − k ] x[n]*h[n]=h[n]*x[n]=\sum_{k=-\infin}^{+\infin}x[k]h[n-k] x[n]h[n]=h[n]x[n]=k=+x[k]h[nk]
    x ( t ) ∗ h ( t ) = h ( t ) ∗ x ( t ) = ∫ − ∞ + ∞ x ( τ ) δ ( t − τ ) d τ x(t)*h(t)=h(t)*x(t)=\int_{-\infin}^{+\infin}x(\tau)\delta(t-\tau)d\tau x(t)h(t)=h(t)x(t)=+x(τ)δ(tτ)dτ
    可以通过换元 m = n − k , u = t − τ m=n-k, u=t-\tau m=nk,u=tτ 证明。

  2. 分配律 (the distributive property)
    x [ n ] ∗ ( h 1 [ n ] + h 2 [ n ] ) = x [ n ] ∗ h 1 [ n ] + x [ n ] ∗ h 2 [ n ] x[n]*(h_1[n]+h_2[n])=x[n]*h_1[n]+x[n]*h_2[n] x[n](h1[n]+h2[n])=x[n]h1[n]+x[n]h2[n]
    x ( t ) ∗ [ h 1 ( t ) + h 2 ( t ) ] = x ( t ) ∗ h 1 ( t ) + x ( t ) ∗ h 2 ( t ) x(t)*[h_1(t)+h_2(t)]=x(t)*h_1(t)+x(t)*h_2(t) x(t)[h1(t)+h2(t)]=x(t)h1(t)+x(t)h2(t)
    这个性质可以将一个并联 (parallel interconnection) 的系统化简。

  3. 结合律 (the associative property)
    x [ n ] ∗ ( h 1 [ n ] ∗ h 2 [ n ] ) = ( x [ n ] ∗ h 1 [ n ] ) ∗ h 2 [ n ] x[n]*(h_1[n]*h_2[n])=(x[n]*h_1[n])*h_2[n] x[n](h1[n]h2[n])=(x[n]h1[n])h2[n]
    x ( t ) ∗ [ h 1 ( t ) ∗ h 2 ( t ) ] = [ x ( t ) ∗ h 1 ( t ) ] ∗ h 2 ( t ) x(t)*[h_1(t)*h_2(t)]=[x(t)*h_1(t)]*h_2(t) x(t)[h1(t)h2(t)]=[x(t)h1(t)]h2(t)
    运用分配律和结合律,可以将一个级联系统中子系统的顺序随意排列。

  4. 记忆性
    由卷积公式,LTI系统无记忆性的条件是 h = K δ h=K\delta h=,此时系统变成 y = K x y=Kx y=Kx,如果 K = 1 K=1 K=1,则该系统成为一个单位系统 (identity system),输入与输出相等,即 x [ n ] = x [ n ] ∗ δ [ n ] x[n]=x[n]*\delta[n] x[n]=x[n]δ[n] x ( t ) = x ( t ) ∗ δ ( t ) x(t)=x(t)*\delta(t) x(t)=x(t)δ(t)

  5. 可逆性
    如果一个LTI系统 h ( t ) h(t) h(t) 是可逆的,则它的逆系统 h 1 ( t ) h_1(t) h1(t) 也是LTI的,且满足 h ( t ) ∗ h 1 ( t ) = δ ( t ) h(t)*h_1(t)=\delta(t) h(t)h1(t)=δ(t)

  6. 因果性
    根据卷积公式和因果性的定义,某LTI系统是因果系统的充要条件是
    ∀ n < 0 , h [ n ] = 0 {\forall}n<0, h[n]=0 n<0,h[n]=0
    如果在某个时间因果系统的输入是0,那么这时的输出也一定是0。

    因果信号:n<0 或 t<0 时值为0的信号。

  7. 稳定性
    LTI系统稳定的充要条件是它的单位冲激响应绝对可和 (absolutely summable) 或绝对可积 (absolutely integrable) ,即 ∑ k = − ∞ + ∞ ∣ h [ k ] ∣ < ∞ \sum_{k=-\infin}^{+\infin}\left|{h[k]}\right|<\infin k=+h[k]<
    ∫ − ∞ + ∞ ∣ h ( t ) ∣ d t < ∞ \int_{-\infin}^{+\infin}\left|{h(t)}\right|dt<\infin +h(t)dt<

  8. 单位阶跃响应 (unit step response)
    当输入为单位阶跃函数 u ( t ) , u [ n ] u(t), u[n] u(t),u[n] 时,系统的输出为单位阶跃响应 s ( t ) , s [ n ] s(t), s[n] s(t),s[n] ,即 s = u ∗ h s=u*h s=uh,所以有 h [ n ] = s [ n ] − s [ n − 1 ] h[n]=s[n]-s[n-1] h[n]=s[n]s[n1] h ( t ) = d s ( t ) d t = s ′ ( t ) h(t)=\frac{ds(t)}{dt}=s'(t) h(t)=dtds(t)=s(t)

差分方程和微分方程

  1. 微分方程
    一阶微分方程具有形式
    d y ( t ) d t + a y ( t ) = b x ( t ) \frac{dy(t)}{dt}+ay(t)=bx(t) dtdy(t)+ay(t)=bx(t)
    微分方程加上辅助条件 (auxiliary conditions) 可以完全表征一个系统。

    微分方程的解包含通解(homogeneous solution) y h ( t ) y_h(t) yh(t) 和特解(particular solution) y p ( t ) y_p(t) yp(t),也可以认为是自由响应 (natural response) 和强迫响应 (forced response) 的组合。微分方程的解法可以借鉴高等数学中线性微分方程的求解。

    N阶常系数微分方程可以写成以下形式 ∑ k = 0 N a k d k y ( t ) d t k = ∑ k = 0 M b k d k x ( t ) d t k \sum_{k=0}^{N}a_k\frac{d^ky(t)}{dt^k}=\sum_{k=0}^{M}b_k\frac{d^kx(t)}{dt^k} k=0Nakdtkdky(t)=k=0Mbkdtkdkx(t)
    通常认为初始条件是松弛的 (initial rest),即当 t ≤ t 0 t\leq{t_0} tt0 时, x ( t ) = 0 x(t)=0 x(t)=0,所以当 t ≤ t 0 t\leq{t_0} tt0 时, y ( t ) = 0 y(t)=0 y(t)=0,所以可以得到初始条件
    y ( t 0 ) = d y ( t 0 ) d t = … = d N − 1 y ( t 0 ) d t N − 1 = 0 y(t_0)=\frac{dy(t_0)}{dt}=…=\frac{d^{N-1}y(t_0)}{dt^{N-1}}=0 y(t0)=dtdy(t0)==dtN1dN1y(t0)=0
    这个条件可以保证上述微分方程所描述的系统是因果的LTI系统。

  2. 差分方程
    N阶常系数差分方程/递归方程 (recursive equation) 可以写成以下形式 ∑ k = 0 N a k y [ n − k ] = ∑ k = 0 M b k x [ n − k ] \sum_{k=0}^{N}a_ky[n-k]=\sum_{k=0}^{M}b_kx[n-k] k=0Naky[nk]=k=0Mbkx[nk]
    类似地,如果当 n < n 0 n<{n_0} n<n0 时, x [ n ] = 0 x[n]=0 x[n]=0,所以当 n < n 0 n<{n_0} n<n0 时, y [ n ] = 0 y[n]=0 y[n]=0,这个条件可以保证上述差分方程所描述的系统是因果的LTI系统。
    N = 0 N=0 N=0 时,所得到的的单位冲激响应h[n]长度有限,所以被称为有限冲激响应系统 (finite impulse response system, FIR system)
    N ≥ 0 N\geq0 N0 时,所得到的的单位冲激响应h[n]长度无限,所以被称为无限冲激响应系统 (infinite impulse response system, IIR system)

奇异函数 (singularity functions)

奇异函数是一类可以用通过其卷积来定义的函数。

  1. 单位冲激函数的运算定义 (operational definition):
    x ( t ) = x ( t ) ∗ δ ( t ) 或 g ( 0 ) = ∫ − ∞ + ∞ g ( τ ) δ ( τ ) d τ x(t)=x(t)*\delta(t)或g(0)=\int_{-\infin}^{+\infin}g(\tau)\delta(\tau)d\tau x(t)=x(t)δ(t)g(0)=+g(τ)δ(τ)dτ
    所以(将f(t)g(t)看成一个整体) f ( 0 ) g ( 0 ) = ∫ − ∞ + ∞ f ( τ ) g ( τ ) δ ( τ ) d τ f(0)g(0)=\int_{-\infin}^{+\infin}f(\tau)g(\tau)\delta(\tau)d\tau f(0)g(0)=+f(τ)g(τ)δ(τ)dτ
    又因为 f ( 0 ) g ( 0 ) = ∫ − ∞ + ∞ f ( 0 ) g ( τ ) δ ( τ ) d τ f(0)g(0)=\int_{-\infin}^{+\infin}f(0)g(\tau)\delta(\tau)d\tau f(0)g(0)=+f(0)g(τ)δ(τ)dτ
    所以
    f ( t ) δ ( t ) = f ( 0 ) δ ( t ) f(t)\delta(t)=f(0)\delta(t) f(t)δ(t)=f(0)δ(t)
  2. 单位冲激偶 (unit doublets)
    单位冲激偶是单位冲激信号 δ ( t ) \delta(t) δ(t) 的一阶导数,是系统 y ( t ) = d x ( t ) d t y(t)=\frac{dx(t)}{dt} y(t)=dtdx(t)的单位冲激响应,记为 u 1 ( t ) u_1(t) u1(t),写成卷积的形式:
    d x ( t ) d t = x ( t ) ∗ u 1 ( t ) \frac{dx(t)}{dt}=x(t)*u_1(t) dtdx(t)=x(t)u1(t)
    x ( t ) = 1 x(t)=1 x(t)=1,有 ∫ − ∞ + ∞ u 1 ( τ ) d τ = 0 \int_{-\infin}^{+\infin}u_1(\tau)d\tau=0 +u1(τ)dτ=0
    同样,可以定义单位冲激信号 δ ( t ) \delta(t) δ(t) 的N阶导数
    u k ( t ) = u 1 ( t ) ∗ … ∗ u 1 ( t ) ( N 个 u 1 ( t ) 之积) u_k(t)=u_1(t)*…*u_1(t)(N个u_1(t)之积) uk(t)=u1(t)u1(t)Nu1(t)之积)
  3. 单位阶跃信号
    考虑到积分的情况,设积分器
    y ( t ) = ∫ − ∞ t x ( τ ) d τ y(t)=\int_{-\infin}^{t}x(\tau)d\tau y(t)=tx(τ)dτ单位冲激响应为 u ( t ) = u − 1 ( t ) = ∫ − ∞ t δ ( τ ) d τ u(t)=u_{-1}(t)=\int_{-\infin}^{t}\delta(\tau)d\tau u(t)=u1(t)=tδ(τ)dτ
    x ( t ) ∗ u ( t ) = ∫ − ∞ t x ( τ ) d τ x(t)*u(t)=\int_{-\infin}^{t}x(\tau)d\tau x(t)u(t)=tx(τ)dτ
    同样,可以定义单位冲激信号 δ ( t ) \delta(t) δ(t) 的N次积分
    u − k ( t ) = ∫ − ∞ t u − ( k − 1 ) ( t ) d τ = t k − 1 ( k − 1 ) ! u ( t ) u_{-k}(t)=\int_{-\infin}^{t}u_{-(k-1)}(t)d\tau=\frac{t^{k-1}}{(k-1)!}u(t) uk(t)=tu(k1)(t)dτ=(k1)!tk1u(t)
    u k ( t ) ∗ u r ( t ) = u k + r ( t ) u_{k}(t)*u_{r}(t)=u_{k+r}(t) uk(t)ur(t)=uk+r(t)
    通过上述表达式,可以将求导和积分化为卷积运算。
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dccishere

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值