高数常用公式

由于高数公式比较多,一次也记不住,需要经常翻阅书籍,

因此,对高数中常用的公式进行了整理,因为运算中经常出现中学的公式,所以也将中学公式进行了整理。

中学公式

乘法

立方和公式:
a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) \mathop{{a}}\nolimits^{{3}}+\mathop{{b}}\nolimits^{{3}}={ \left( {a+b} \right) }{ \left( {\mathop{{a}}\nolimits^{{2}}-ab+\mathop{{b}}\nolimits^{{2}}} \right) } a3+b3=(a+b)(a2ab+b2)
立方差公式:
a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) \mathop{{a}}\nolimits^{{3}}-\mathop{{b}}\nolimits^{{3}}={ \left( {a-b} \right) }{ \left( {\mathop{{a}}\nolimits^{{2}}+ab+\mathop{{b}}\nolimits^{{2}}} \right) } a3b3=(ab)(a2+ab+b2)
完全立方公式:
( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 ( a − b ) 3 = a 3 − 3 a 2 b + 3 a b 2 − b 3 {\mathop{{ \left( {a+b} \right) }}\nolimits^{{3}}=\mathop{{a}}\nolimits^{{3}}+3\mathop{{a}}\nolimits^{{2}}b+3a\mathop{{b}}\nolimits^{{2}}+\mathop{{b}}\nolimits^{{3}}}\\ {\mathop{{ \left( {a-b} \right) }}\nolimits^{{3}}=\mathop{{a}}\nolimits^{{3}}-3\mathop{{a}}\nolimits^{{2}}b+3a\mathop{{b}}\nolimits^{{2}}-\mathop{{b}}\nolimits^{{3}}} (a+b)3=a3+3a2b+3ab2+b3(ab)3=a33a2b+3ab2b3
十字相乘法:
( x + a ) ( x + b ) = x 2 + ( a + b ) x + a b \left( {x+a} \left) { \left( {x+b} \right) }=\mathop{{x}}\nolimits^{{2}}+{ \left( {a+b} \right) }x+ab\right. \right. (x+a)(x+b)=x2+(a+b)x+ab
一元二次方程:
a x 2 + b x + c = 0 Δ = b 2 − 4 a c x 1 , 2 = − b ± b 2 − 4 a c 2 a x 1 + x 2 = − b a x 1 x 2 = c a {a\mathop{{x}}\nolimits^{{2}}+bx+c=0}\\ { \Delta =\mathop{{b}}\nolimits^{{2}}-4ac}\\ {\mathop{{x}}\nolimits_{{1,2}}=\frac{{-b \pm \sqrt{{\mathop{{b}}\nolimits^{{2}}-4ac}}}}{{2a}}}\\ {\mathop{{x}}\nolimits_{{1}}+\mathop{{x}}\nolimits_{{2}}=-\frac{{b}}{{a}}}\\ {\mathop{{x}}\nolimits_{{1}}\mathop{{x}}\nolimits_{{2}}=\frac{{c}}{{a}}} ax2+bx+c=0Δ=b24acx1,2=2ab±b24ac x1+x2=abx1x2=ac

裂项法

1 n ( n + 1 ) = 1 n − 1 n + 1 1 n ( n + k ) = 1 k ( 1 n − 1 n + k ) 1 n ( n + 1 ) = 1 n + 1 − 1 n 1 n ( n + k ) = 1 k ( 1 n + k − 1 n ) \frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}\\ \frac{1}{n(n+k)}=\frac{1}{k}(\frac{1}{n}-\frac{1}{n+k})\\ \\ \frac{1}{\sqrt n \sqrt{(n+1)}}=\frac{1}{\sqrt{n+1}}-\frac{1}{\sqrt{n}}\\ \frac{1}{\sqrt n \sqrt{(n+k)}}=\frac{1}{k}(\frac{1}{\sqrt{n+k}}-\frac{1}{\sqrt{n}})\\ n(n+1)1=n1n+11n(n+k)1=k1(n1n+k1)n (n+1) 1=n+1 1n 1n (n+k) 1=k1(n+k 1n 1)

常用不等式

三角不等式:
∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣ { \left| a+b \left| \le \left| a \left| + \left| b \right| \right. \right. \right. \right. } a+ba+b

∣ a − b ∣ ≤ ∣ a ∣ + ∣ b ∣ \left| a-b \left| \le \left| a \left| + \left| b \right| \right. \right. \right. \right. aba+b

∣ a − b ∣ ≥ ∣ a ∣ − ∣ b ∣ \left| a-b \left| \ge \left| a \left| - \left| b \right| \right. \right. \right. \right. abab

∣ a ∣ − ∣ b ∣ ≤ ∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣ \left| a \left| - \left| b \left| \le \left| a+b \left| \le \left| a \left| + \left| b \right| \right. \right. \right. \right. \right. \right. \right. \right. aba+ba+b

正弦余弦不等式:
当 x ∈ ( 0 , π 2 ) , 则sin x < x < tan x {\text{当}x \in \left( 0,\frac{{ \pi }}{{2}} \left) ,\right. \right. }\\ {\text{则}\text{s}\text{i}\text{n}x < x < \text{t}\text{a}\text{n}x} x(0,2π),sinx<x<tanx

当 x ∈ ( 0 , π 2 ) , 则 1 < sin x + cos x ≤ 2 {\text{当}x \in \left( 0,\frac{{ \pi }}{{2}} \left) ,\right. \right. }\\ {\text{则}1 < \text{s}\text{i}\text{n}x+\text{c}\text{o}\text{s}x \le \sqrt{{2}}} x(0,2π),1<sinx+cosx2

均值不等式:
a , b ∈ R ⇒ a 2 + b 2 > 2 a b ( 当且仅当 a = b 时取“ = ”号 ) a,b \in R \Rightarrow a\mathop{{}}\nolimits^{{2}}+b\mathop{{}}\nolimits^{{2}} > 2ab \left( \text{当}\text{且}\text{仅}\text{当}a=b\text{时}\text{取}\text{“}=\text{”}\text{号} \right) a,bRa2+b2>2ab(a=b=)

三角函数

倍角公式

sin 2 α = 2 sin α cos α cos 2 α = cos 2 α − sin 2 α = 2 cos 2 α − 1 = 1 − 2 sin 2 α tan 2 α = 2 tan α 1 − tan 2 α { \text{sin} 2 \alpha =2 \text{sin} \alpha \text{cos} \alpha }\\ { \text{cos} 2 \alpha {={\mathop{{ \text{cos} }}\nolimits^{{2}} \alpha -}\mathop{{ \text{sin} }}\nolimits^{{2}} \alpha }\\ {=2\mathop{{ \text{cos} }}\nolimits^{{2}} \alpha -1}\\ {=1-2\mathop{{ \text{sin} }}\nolimits^{{2}} \alpha } }\\ { \text{tan} 2 \alpha =\frac{{2 \text{tan} \alpha }}{{1-\mathop{{ \text{tan} }}\nolimits^{{2}} \alpha }}} sin2α=2sinαcosαcos2α=cos2αsin2α=2cos2α1=12sin2αtan2α=1tan2α2tanα

和差化积公式

sin α + sin β = 2 sin α + β 2 cos α − β 2 sin α − sin β = 2 cos α + β 2 sin α − β 2 cos α + cos β = 2 cos α + β 2 cos α − β 2 cos α − cos β = − 2 sin α + β 2 sin α − β 2 { \text{sin} \alpha + \text{sin} \beta =2 \text{sin} \frac{{ \alpha + \beta }}{{2}} \text{cos} \frac{{ \alpha - \beta }}{{2}}}\\ { \text{sin} \alpha - \text{sin} \beta =2 \text{cos} \frac{{ \alpha + \beta }}{{2}} \text{sin} \frac{{ \alpha - \beta }}{{2}}}\\ { \text{cos} \alpha + \text{cos} \beta =2 \text{cos} \frac{{ \alpha + \beta }}{{2}} \text{cos} \frac{{ \alpha - \beta }}{{2}}}\\ { \text{cos} \alpha - \text{cos} \beta =-2 \text{sin} \frac{{ \alpha + \beta }}{{2}} \text{sin} \frac{{ \alpha - \beta }}{{2}}} sinα+sinβ=2sin2α+βcos2αβsinαsinβ=2cos2α+βsin2αβcosα+cosβ=2cos2α+βcos2αβcosαcosβ=2sin2α+βsin2αβ

加法公式

sin ( α + β ) = sin α cos β + cos α sin β sin ( α − β ) = sin α cos β − cos α sin β cos ( α + β ) = cos α cos β − sin α sin β cos ( α − β ) = cos α cos β + sin α sin β tan ( α + β ) = tan α + tan β 1 − tan α tan β tan ( α − β ) = tan α − tan β 1 − tan α tan β { \text{sin} { \left( { \alpha + \beta } \right) }= \text{sin} \alpha \text{cos} \beta + \text{cos} \alpha \text{sin} \beta }\\ { \text{sin} { \left( { \alpha - \beta } \right) }= \text{sin} \alpha \text{cos} \beta - \text{cos} \alpha \text{sin} \beta }\\ { \text{cos} { \left( { \alpha + \beta } \right) }= \text{cos} \alpha \text{cos} \beta - \text{sin} \alpha \text{sin} \beta }\\ { \text{cos} { \left( { \alpha - \beta } \right) }= \text{cos} \alpha \text{cos} \beta + \text{sin} \alpha \text{sin} \beta }\\ { \text{tan} { \left( { \alpha + \beta } \right) }=\frac{{ \text{tan} \alpha + \text{tan} \beta }}{{1- \text{tan} \alpha \text{tan} \beta }}}\\ { \text{tan} { \left( { \alpha - \beta } \right) }=\frac{{ \text{tan} \alpha - \text{tan} \beta }}{{1- \text{tan} \alpha \text{tan} \beta }}} sin(α+β)=sinαcosβ+cosαsinβsin(αβ)=sinαcosβcosαsinβcos(α+β)=cosαcosβsinαsinβcos(αβ)=cosαcosβ+sinαsinβtan(α+β)=1tanαtanβtanα+tanβtan(αβ)=1tanαtanβtanαtanβ

恒等式

sin 2 α + cos 2 = 1 tan 2 α + 1 = sec 2 α cot 2 α + 1 = csc 2 α {\mathop{{ \text{sin} }}\nolimits^{{2}} \alpha +\mathop{{ \text{cos} }}\nolimits^{{2}}=1}\\ {\mathop{{ \text{tan} }}\nolimits^{{2}} \alpha +1=\mathop{{ \text{sec} }}\nolimits^{{2}} \alpha }\\ {\mathop{{ \text{cot} }}\nolimits^{{2}} \alpha +1=\mathop{{ \text{csc} }}\nolimits^{{2}} \alpha } sin2α+cos2=1tan2α+1=sec2αcot2α+1=csc2α

极限

常用的基本极限

函数极限:

lim ⁡ x → 0 sin ⁡ x x = 1 lim ⁡ x → 0 ( 1 + x ) 1 x = e lim ⁡ x → ∞ ( 1 + 1 x ) x = e lim ⁡ x → 0 ( a x − 1 x ) x = ln ⁡ a lim ⁡ x → ∞ a n x n + a n − 1 x n − 1 + . . . + a 1 x + a 0 b m x m + b m − 1 x m − 1 + . . . + b 1 x + a 0 = { a n b m , n = m 0 , n < m ∞ , n > m \lim_{x\to 0}{\frac{\sin x}{x}}=1\\ \\ \lim_{x\to 0}{(1+x)^\frac{1}{x}}=e\\ \lim_{x\to \infty}{(1+\frac{1}{x})^x}=e\\ \\ \lim_{x\to 0}{(\frac{a^x-1}{x})^x}=\ln a\\ \\ \lim_{x\to \infty}{\frac{a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0}{b_mx^m+b_{m-1}x^{m-1}+...+b_1x+a_0}}= \begin{cases} \frac{a_n}{b_m}, &n=m\\ 0, &n<m\\ \infty, &n>m \end{cases} x0limxsinx=1x0lim(1+x)x1=exlim(1+x1)x=ex0lim(xax1)x=lnaxlimbmxm+bm1xm1+...+b1x+a0anxn+an1xn1+...+a1x+a0=bman,0,,n=mn<mn>m
数列极限:
lim ⁡ n → ∞ n n = 1 lim ⁡ n → ∞ a n = 1 ( a > 0 ) lim ⁡ x → ∞ x n = { 0 , ∣ x ∣ < 1 ∞ , ∣ x ∣ > 1 1 , x = 1 不存在 , x = − 1 lim ⁡ x → ∞ e n x = { 0 , x < 0 + ∞ , x > 0 1 , x = 0 \lim_{n\to \infty}{\sqrt[n]n}=1\\ \\ \lim_{n\to \infty}{\sqrt[n]a}=1(a>0)\\ \lim_{x\to \infty}{x^n}= \begin{cases} 0, &|x|<1\\ \infty, &|x|>1\\ 1, &x=1\\ \text{不存在},&x=-1 \end{cases} \\ \\ \lim_{x\to \infty}{e^{nx}}= \begin{cases} 0, &x<0\\ +\infty, &x>0\\ 1, &x=0 \end{cases} nlimnn =1nlimna =1(a>0)xlimxn=0,,1,不存在,x<1x>1x=1x=1xlimenx=0,+,1,x<0x>0x=0

常用的等价无穷小

当 x → 0 时,
x ∼ sin ⁡ x ∼ tan ⁡ x ∼ arcsin ⁡ x ∼ arctan ⁡ x ∼ ln ⁡ ( 1 + x ) ∼ e x − 1 x\sim \sin x\\ \sim \tan x\\ \sim \arcsin x\\ \sim \arctan x\\ \sim \ln (1+x)\\ \sim e^x-1 xsinxtanxarcsinxarctanxln(1+x)ex1

( 1 + x ) a − 1 ∼ a x a x − 1 ∼ x ln ⁡ a 若 a ( x ) → 0 , a ( x ) b ( x ) → 0 , 则 ( 1 + a ( x ) ) b ( x ) − 1 ∼ a ( x ) b ( x ) (1+x)^a-1 \sim ax\\ a^x-1 \sim x\ln a\\ \\ \boxed{ 若a(x)→0,a(x)b(x)→0,\\ 则 (1+a(x))^{b(x)}-1 \sim a(x)b(x)} (1+x)a1axax1xlnaa(x)0,a(x)b(x)0,(1+a(x))b(x)1a(x)b(x)

1 − cos ⁡ x ∼ 1 2 x 2 x − ln ⁡ ( 1 + x ) ∼ 1 2 x 2 x − sin ⁡ x ∼ 1 6 x 3 arcsin ⁡ x − x ∼ 1 6 x 3 tan ⁡ x − x ∼ 1 3 x 3 x − arctan ⁡ x ∼ 1 3 x 3 1-\cos x\sim \frac{1}{2}x^2\\ x-\ln (1+x) \sim \frac{1}{2}x^2\\ \\ x-\sin x \sim \frac{1}{6}x^3\\ \arcsin x-x \sim \frac{1}{6}x^3\\ \\ \tan x- x \sim \frac{1}{3}x^3\\ x-\arctan x \sim \frac{1}{3}x^3\\ 1cosx21x2xln(1+x)21x2xsinx61x3arcsinxx61x3tanxx31x3xarctanx31x3

导数

基本公式

( C ) ′ = 0 ( x μ ) ′ = μ x μ − 1 { \left( {C} \left) \prime =0\right. \right. }\\ { \left( {\mathop{{x}}\nolimits^{{ \mu }}} \left) \prime = \mu \mathop{{x}}\nolimits^{{ \mu -1}}\right. \right. } (C)=0(xμ)=μxμ1

( sin x ) ′ = cos x ( cos x ) ′ = − sin x ( tan x ) ′ = sec 2 x ( cot x ) ′ = − csc 2 x ( sec x ) ′ = sec x tan x ( csc x ) ′ = − csc x cot x { \left( { \text{sin} x} \left) \prime = \text{cos} x\right. \right. }\\ { \left( { \text{cos} x} \left) \prime =- \text{sin} x\right. \right. }\\ { \left( { \text{tan} x} \left) \prime =\mathop{{ \text{sec} }}\nolimits^{{2}}x\right. \right. }\\ { \left( { \text{cot} x} \left) \prime =-\mathop{{ \text{csc} }}\nolimits^{{2}}x\right. \right. }\\ { \left( { \text{sec} x} \left) \prime = \text{sec} x \text{tan} x\right. \right. }\\ { \left( { \text{csc} x} \left) \prime =- \text{csc} x{ \text{cot} x}\right. \right. } (sinx)=cosx(cosx)=sinx(tanx)=sec2x(cotx)=csc2x(secx)=secxtanx(cscx)=cscxcotx

( a x ) ′ = a x ln a ( e x ) ′ = e x ( log a x ) ′ = 1 x ln a ( ln a ) ′ = 1 x { \left( {\mathop{{a}}\nolimits^{{x}}} \left) \prime =\mathop{{a}}\nolimits^{{x}} \text{ln} a\right. \right. }\\ { \left( {\mathop{{e}}\nolimits^{{x}}} \left) \prime =\mathop{{e}}\nolimits^{{x}}\right. \right. }\\ { \left( {\mathop{{ \text{log} }}\nolimits_{{a}}x} \left) \prime =\frac{{1}}{{x \text{ln} a}}\right. \right. }\\ { \left( { \text{ln} a} \left) \prime =\frac{{1}}{{x}}\right. \right. } (ax)=axlna(ex)=ex(logax)=xlna1(lna)=x1

( arcsin x ) ′ = 1 1 − x 2 ( arccos x ) ′ = − 1 1 − x 2 ( arctan x ) ′ = 1 1 + x 2 ( arccot x ) ′ = − 1 1 + x 2 { \left( { \text{arcsin} x} \left) \prime =\frac{{1}}{{\sqrt{{1-\mathop{{x}}\nolimits^{{2}}}}}}\right. \right. }\\ { \left( { \text{arccos} x} \left) \prime =-\frac{{1}}{{\sqrt{{1-\mathop{{x}}\nolimits^{{2}}}}}}\right. \right. }\\ { \left( { \text{arctan} x} \left) \prime =\frac{{1}}{{1+\mathop{{x}}\nolimits^{{2}}}}\right. \right. }\\ { \left( { \text{arccot} x} \left) \prime =-\frac{{1}}{{1+\mathop{{x}}\nolimits^{{2}}}}\right. \right. } (arcsinx)=1x2 1(arccosx)=1x2 1(arctanx)=1+x21(arccotx)=1+x21

求导法则

有理运算法则

设 u =u(x),v = v(x) 在 x 处可导,则
( u ± v ) ′ = u ′ ± v ′ ( C u ) ′ = C u ′ ( u v ) ′ = u ′ v + u v ′ ( u v ) ′ = u ′ v − u v ′ v 2 , ( v ≠ 0 ) { \left( {u \pm v} \left) \prime ={u \prime } \pm {v \prime }\right. \right. }\\ { \left( {Cu} \left) \prime =C{u \prime }\right. \right. }\\ { \left( {uv} \left) \prime ={u \prime }v+u{v \prime }\right. \right. }\\ { \left( {\frac{{u}}{{v}}} \left) \prime =\frac{{u \prime v-u{v \prime }}}{{\mathop{{v}}\nolimits^{{2}}}},{ \left( {v \neq 0} \right) }\right. \right. } (u±v)=u±v(Cu)=Cu(uv)=uv+uv(vu)=v2uvuv,(v=0)

复合函数求导

y = f ( u ) , u = g ( x ) d y d x = d y d u ⋅ d u d x {y=f{ \left( {u} \right) },u=g{ \left( {x} \right) }}\\ {\frac{{ \text{d} y}}{{ \text{d} x}}=\frac{{ \text{d} y}}{{ \text{d} u}} \cdot \frac{{ \text{d} u}}{{ \text{d} x}}} y=f(u),u=g(x)dxdy=dudydxdu

隐函数求导

设 y = f(x) 是由方程 F(x,y) = 0 所确定的可导函数,为求得 y’ ,可在方程 F(x,y) = 0 两边对 x 求导,可得到一个含有 y’ 的方程,从中解出 y’ 即可

y ′ 也 可 由 多 元 函 数 微 分 法 中 的 隐 函 数 求 导 公 式 d y d x = − F x ′ F y ′ 得 到 y' 也可由多元函数微分法中的隐函数求导公式\frac{dy}{dx}=-\frac{F'_x}{F'_y}得到 ydxdy=FyFx

反函数求导

若 y = f(x) 在某区间内可导,且 f’(x) ≠ 0,则其反函数 x = φ(y) 在对应区间内也可导,且
φ ′ ( x ) = 1 f ′ ( x ) 即 d x d y = 1 d y d x \varphi'(x)=\frac{1}{f'(x)}\\ 即\frac{dx}{dy}=\frac{1}{\frac{dy}{dx}} φ(x)=f(x)1dydx=dxdy1

参数方程求导

设 y = y ( x ) 是 由 参 数 方 程 { x = φ ( t ) , ( α ≤ t ≤ β ) 确 定 的 函 数 , 则 y = ψ ( t ) , ( 1 ) 若 φ ( t ) 和 ψ ( t ) 都 可 导 , 且 φ ′ ( t ) ≠ 0 , 则 d y d x = ψ ′ ( t ) φ ′ ( t ) ( 2 ) 若 φ ( t ) 和 ψ ( t ) 二 阶 可 导 , 且 φ ′ ( t ) ≠ 0 , 则 d 2 y d x 2 = d d t ( ψ ′ ( t ) φ ′ ( t ) ) ⋅ 1 φ ′ ( t ) = ψ ′ ′ ( t ) φ ′ ( t ) − φ ′ ′ ( t ) ψ ′ ( t ) φ ′ 3 ( t ) 设 y=y(x)是由参数方程\begin{cases} x=\varphi(t),\\ &(\alpha \leq t \leq \beta)确定的函数,则\\ y=\psi(t), \end{cases} \\\\ (1)若\varphi(t)和\psi(t)都可导,且\varphi'(t)\not=0,则\\ \frac{dy}{dx}=\frac{\psi'(t)}{\varphi'(t)}\\ \\ (2)若\varphi(t)和\psi(t)二阶可导,且\varphi'(t)\not=0,则\\ \frac{d^2y}{dx^2}=\frac{d}{dt}(\frac{\psi'(t)}{\varphi'(t)})\cdot\frac{1}{\varphi'(t)}\\ \\ =\frac{\psi''(t)\varphi'(t)-\varphi''(t)\psi'(t)}{\varphi'^3(t)} y=y(x)x=φ(t),y=ψ(t),(αtβ)(1)φ(t)ψ(t),φ(t)=0,dxdy=φ(t)ψ(t)(2)φ(t)ψ(t),φ(t)=0,dx2d2y=dtd(φ(t)ψ(t))φ(t)1=φ3(t)ψ(t)φ(t)φ(t)ψ(t)

常用的高阶导数公式

( sin ⁡ x ) ( n ) = sin ⁡ ( x + n ⋅ π 2 ) ( cos ⁡ x ) ( n ) = cos ⁡ ( x + n ⋅ π 2 ) ( u ± v ) ( n ) = ( u ) ( n ) ± ( v ) ( n ) ( u v ) ( n ) = ∑ k = 0 n C n k u ( k ) v ( n − k ) (\sin x)^{(n)}=\sin(x+n·\frac{\pi}{2})\\ (\cos x)^{(n)}=\cos(x+n·\frac{\pi}{2})\\ (u\pm v)^{(n)}=(u)^{(n)}\pm (v)^{(n)}\\ (uv)^{(n)}=\sum_{k=0}^{n}C^k_nu^{(k)}v^{(n-k)} (sinx)(n)=sin(x+n2π)(cosx)(n)=cos(x+n2π)(u±v)(n)=(u)(n)±(v)(n)(uv)(n)=k=0nCnku(k)v(nk)

不定积分

基本公式

∫ k d x = k x + C ∫ x μ d x = x μ + 1 μ + 1 + C , ( μ ≠ − 1 ) ∫ 1 x d x = ln ∣ x ∣ + C ∫ 1 1 + x 2 d x = arctan x + C ∫ 1 1 − x 2 d x = arcsin x + C {{}_{ }^{ } \int _{ }^{ }k \text{d} x=kx+C}\\ {{}_{ }^{ } \int _{ }^{ }\mathop{{x}}\nolimits^{{ \mu }} \text{d} x=\frac{{\mathop{{x}}\nolimits^{{ \mu +1}}}}{{ \mu +1}}+C,{ \left( { \mu \neq -1} \right) }}\\ {{}_{ }^{ } \int _{ }^{ }\frac{{1}}{{x}} \text{d} x= \text{ln} { \left| {x} \right| }+C}\\ {{}_{ }^{ } \int _{ }^{ }\frac{{1}}{{1+\mathop{{x}}\nolimits^{{2}}}} \text{d} x= \text{arctan} x+C}\\ {{}_{ }^{ } \int _{ }^{ }\frac{{1}}{{\sqrt{{1-\mathop{{x}}\nolimits^{{2}}}}}} \text{d} x= \text{arcsin} x+C} kdx=kx+Cxμdx=μ+1xμ+1+C,(μ=1)x1dx=lnx+C1+x21dx=arctanx+C1x2 1dx=arcsinx+C

∫ e x d x = e x + C ∫ a x d x = a x ln a + C {{}_{ }^{ } \int _{ }^{ }\mathop{{e}}\nolimits^{{x}} \text{d} x=\mathop{{e}}\nolimits^{{x}}+C}\\ {{}_{ }^{ } \int _{ }^{ }\mathop{{a}}\nolimits^{{x}} \text{d} x=\frac{{\mathop{{a}}\nolimits^{{x}}}}{{ \text{ln} a}}+C}\\ exdx=ex+Caxdx=lnaax+C

∫ cosd x = sin x + C ∫ sin x d x = − cos x + C ∫ 1 cos 2 x d x = ∫ sec 2 x d x = tan x + C ∫ 1 sin 2 x d x = ∫ csc 2 x d x = − cot x + C ∫ sec x tan x d x = sec x + C ∫ csc x cot x d x = − csc x + C {{}_{ }^{ } \int _{ }^{ } \text{cos} \text{d} x= \text{sin} x+C}\\ {{}_{ }^{ } \int _{ }^{ } \text{sin} x \text{d} x=- \text{cos} x+C}\\ {{}_{ }^{ } \int _{ }^{ }\frac{{1}}{{\mathop{{ \text{cos} }}\nolimits^{{2}}x}} \text{d} x={}_{ }^{ } \int _{ }^{ }\mathop{{ \text{sec} }}\nolimits^{{2}}x \text{d} x= \text{tan} x+C}\\ {{}_{ }^{ } \int _{ }^{ }\frac{{1}}{{\mathop{{ \text{sin} }}\nolimits^{{2}}x}} \text{d} x={}_{ }^{ } \int _{ }^{ }\mathop{{ \text{csc} }}\nolimits^{{2}}x \text{d} x=- \text{cot} x+C}\\ {{}_{ }^{ } \int _{ }^{ } \text{sec} x \text{tan} x \text{d} x= \text{sec} x+C}\\ {{}_{ }^{ } \int _{ }^{ } \text{csc} x \text{cot} x \text{d} x=- \text{csc} x+C} cosdx=sinx+Csinxdx=cosx+Ccos2x1dx=sec2xdx=tanx+Csin2x1dx=csc2xdx=cotx+Csecxtanxdx=secx+Ccscxcotxdx=cscx+C

∫ tan x d x = − ln ∣ cos x ∣ + C ∫ cot x d x = ln ∣ sin x ∣ + C ∫ sec x d x = ln ∣ sec x + tan x ∣ + C ∫ csc x d x = ln ∣ csc x − cot x ∣ + C {{}_{ }^{ } \int _{ }^{ } \text{tan} x \text{d} x=- \text{ln} { \left| { \text{cos} x} \right| }+C}\\ {{}_{ }^{ } \int _{ }^{ } \text{cot} x \text{d} x= \text{ln} { \left| { \text{sin} x} \right| }+C}\\ {{}_{ }^{ } \int _{ }^{ } \text{sec} x \text{d} x= \text{ln} { \left| { \text{sec} x+ \text{tan} x} \right| }+C}\\ {{}_{ }^{ } \int _{ }^{ } \text{csc} x \text{d} x= \text{ln} { \left| { \text{csc} x- \text{cot} x} \right| }+C} tanxdx=lncosx+Ccotxdx=lnsinx+Csecxdx=lnsecx+tanx+Ccscxdx=lncscxcotx+C

∫ 1 x 2 + a 2 d x = 1 a arctan x a + C ∫ 1 x 2 − a 2 d x = 1 2 a ln ∣ x − a x + a ∣ + C ∫ 1 a 2 − x 2 d x = arcsin x a + C ∫ 1 x 2 + a 2 d x = ln ( x + x 2 + a 2 ) + C ∫ 1 x 2 − a 2 d x = ln ( x + x 2 − a 2 ) + C {{}_{ }^{ } \int _{ }^{ }\frac{{1}}{{\mathop{{x}}\nolimits^{{2}}+\mathop{{a}}\nolimits^{{2}}}} \text{d} x=\frac{{1}}{{a}} \text{arctan} \frac{{x}}{{a}}+C}\\ {{}_{ }^{ } \int _{ }^{ }\frac{{1}}{{\mathop{{x}}\nolimits^{{2}}-\mathop{{a}}\nolimits^{{2}}}} \text{d} x=\frac{{1}}{{2a}} \text{ln} { \left| {\frac{{x-a}}{{x+a}}} \right| }+C}\\ {{}_{ }^{ } \int _{ }^{ }\frac{{1}}{{\sqrt{{\mathop{{a}}\nolimits^{{2}}-\mathop{{x}}\nolimits^{{2}}}}}} \text{d} x= \text{arcsin} \frac{{x}}{{a}}+C}\\ {{}_{ }^{ } \int _{ }^{ }\frac{{1}}{{\sqrt{{\mathop{{x}}\nolimits^{{2}}+\mathop{{a}}\nolimits^{{2}}}}}} \text{d} x= \text{ln} { \left( {x+\sqrt{{\mathop{{x}}\nolimits^{{2}}+\mathop{{a}}\nolimits^{{2}}}}} \right) }+C}\\ {{}_{ }^{ } \int _{ }^{ }\frac{{1}}{{\sqrt{{\mathop{{x}}\nolimits^{{2}}-\mathop{{a}}\nolimits^{{2}}}}}} \text{d} x= \text{ln} { \left( {x+\sqrt{{\mathop{{x}}\nolimits^{{2}}-\mathop{{a}}\nolimits^{{2}}}}} \right) }+C} x2+a21dx=a1arctanax+Cx2a21dx=2a1lnx+axa+Ca2x2 1dx=arcsinax+Cx2+a2 1dx=ln(x+x2+a2 )+Cx2a2 1dx=ln(x+x2a2 )+C

性质

∫ [ f ( x ) + g ( x ) ] d x = ∫ f ( x ) d x + ∫ g ( x ) d x ∫ k f ( x ) d x = k ∫ f ( x ) d x ∫ u d v = u v − ∫ v d u {{}_{ }^{ } \int _{ }^{ }{ \left[ {f{ \left( {x} \right) }+g{ \left( {x} \right) }} \right] } \text{d} x={}_{ }^{ } \int _{ }^{ }f{ \left( {x} \right) } \text{d} x+{}_{ }^{ } \int _{ }^{ }g{ \left( {x} \right) } \text{d} x}\\ {{}_{ }^{ } \int _{ }^{ }kf{ \left( {x} \right) } \text{d} x=k{}_{ }^{ } \int _{ }^{ }f{ \left( {x} \right) } \text{d} x}\\ {{}_{ }^{ } \int _{ }^{ }u \text{d} v=uv-{}_{ }^{ } \int _{ }^{ }v \text{d} u} [f(x)+g(x)]dx=f(x)dx+g(x)dxkf(x)dx=kf(x)dxudv=uvvdu

三角换元

  1. 含有 a2 - x2 的积分,令 x = a sint
  2. 含有 a2 + x2 的积分,令 x = a tant
  3. 含有 x2 - a2 的积分,令 x = a sect

三角有理式积分

∫ R ( sin ⁡ x , cos ⁡ x ) d x \int R(\sin x,\cos x)dx R(sinx,cosx)dx

(1)一般方法(万能代换)
令 tan ⁡ x 2 = t ∫ R ( sin ⁡ x , cos ⁡ x ) d x = ∫ R ( 2 t 1 + t 2 , 1 − t 2 1 + t 2 ) 2 1 + t 2 d t 令\tan \frac{x}{2}=t \\ \int R(\sin x,\cos x)dx = \int R(\frac{2t}{1+t^2},\frac{1-t^2}{1+t^2}) \frac{2}{1+t^2}dt tan2x=tR(sinx,cosx)dx=R(1+t22t,1+t21t2)1+t22dt
(1)特殊方法(三角变形,换元,分部)

​ 几种常用的换元法
1. 若 R ( − sin ⁡ x , cos ⁡ x ) = − R ( sin ⁡ x , cos ⁡ x ) , 则 令 u = cos ⁡ x , 或 凑 d cos ⁡ x 2. 若 R ( sin ⁡ x , − cos ⁡ x ) = − R ( sin ⁡ x , cos ⁡ x ) , 则 令 u = sin ⁡ x , 或 凑 d sin ⁡ x 3. 若 R ( − sin ⁡ x , − cos ⁡ x ) = R ( sin ⁡ x , cos ⁡ x ) , 则 令 u = tan ⁡ x , 或 凑 d tan ⁡ x 1.若R(-\sin x,\cos x)=-R(\sin x,\cos x),则令u=\cos x,或凑d\cos x \\ 2.若R(\sin x,-\cos x)=-R(\sin x,\cos x),则令u=\sin x,或凑d\sin x \\ 3.若R(-\sin x,-\cos x)=R(\sin x,\cos x),则令u=\tan x,或凑d\tan x 1.R(sinx,cosx)=R(sinx,cosx),u=cosx,dcosx2.R(sinx,cosx)=R(sinx,cosx),u=sinx,dsinx3.R(sinx,cosx)=R(sinx,cosx),u=tanx,dtanx

定积分

∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x , ∀ c ∈ ( a , b ) \mathop{ \int }\nolimits_{{a}}^{{b}}f{ \left( {x} \right) } \text{d} x=\mathop{ \int }\nolimits_{{a}}^{{c}}f{ \left( {x} \right) } \text{d} x+\mathop{ \int }\nolimits_{{c}}^{{b}}f{ \left( {x} \right) } \text{d} x, \forall c \in { \left( {a,b} \right) } abf(x)dx=acf(x)dx+cbf(x)dx,c(a,b)

不等式性质

f ( x ) ≥ g ( x ) , x ∈ [ a , b ] ⇒ ∫ a b f ( x ) d x ≥ ∫ a b g ( x ) d x (1) \tag{1}f{ \left( {x} \right) } \ge g{ \left( {x} \right) },x \in { \left[ {a,b} \right] } \Rightarrow \mathop{ \int }\nolimits_{{a}}^{{b}}f{ \left( {x} \right) } \text{d} x \ge \mathop{ \int }\nolimits_{{a}}^{{b}}g{ \left( {x} \right) } \text{d} x f(x)g(x),x[a,b]abf(x)dxabg(x)dx(1)

M = f m a x ( x ) , m = f m i n ( x ) , x ∈ [ a , b ] m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) (2) \tag{2} {M=\mathop{{f}}\nolimits_{{max}}{ \left( {x} \right) },m=\mathop{{f}}\nolimits_{{min}}{ \left( {x} \right) },x \in { \left[ {a,b} \right] }}\\ {m{ \left( {b-a} \right) } \le \mathop{ \int }\nolimits_{{a}}^{{b}}f{ \left( {x} \right) } \text{d} x \le M{ \left( {b-a} \right) }} M=fmax(x),m=fmin(x),x[a,b]m(ba)abf(x)dxM(ba)(2)

∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) d x ∣ (3) \tag{3}{ \left| {\mathop{ \int }\nolimits_{{a}}^{{b}}f{ \left( {x} \right) } \text{d} x} \right| } \le \mathop{ \int }\nolimits_{{a}}^{{b}}{ \left| {f{ \left( {x} \right) } \text{d} x} \right| } abf(x)dxabf(x)dx(3)

积分中值定理

若函数在闭区间 [ a , b ] 上连续,则 ∃ ξ ∈ [ a , b ] ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) 若 f ( x ) 和 g ( x ) 在闭区间 [ a , b ] 上可积,且 g ( x ) 在此区间上不变号,则 ∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x {\text{若}\text{函}\text{数}\text{在}\text{闭}\text{区}\text{间}{ \left[ {a,b} \right] }\text{上}\text{连}\text{续}\text{,}\text{则}} { \exists \xi \in { \left[ {a,b} \right] }}\\ {\mathop{ \int }\nolimits_{{a}}^{{b}}f{ \left( {x} \right) } \text{d} x=f{ \left( { \xi } \left) { \left( {b-a} \right) }\right. \right. }}\\\\ {\text{若}f{ \left( {x} \right) }\text{和}g{ \left( {x} \right) }\text{在}\text{闭}\text{区}\text{间}{ \left[ {a,b} \right] }\text{上}\text{可}\text{积}\text{,}\text{且}g{ \left( {x} \right) }\text{在}\text{此}\text{区}\text{间}\text{上}\text{不}\text{变}\text{号}\text{,}\text{则}}\\ {\mathop{ \int }\nolimits_{{a}}^{{b}}f{ \left( {x} \right) }g{ \left( {x} \right) } \text{d} x=f{ \left( { \xi } \right) }\mathop{ \int }\nolimits_{{a}}^{{b}}g{ \left( {x} \right) } \text{d} x} [a,b],ξ[a,b]abf(x)dx=f(ξ)(ba)f(x)g(x)[a,b],g(x),abf(x)g(x)dx=f(ξ)abg(x)dx

已有公式

∫ 0 π 2 sin ⁡ n x   d x = ∫ 0 π 2 cos ⁡ n x   d x = { n − 1 n ⋅ n − 3 n − 2 ⋅ . . . ⋅ 1 2 ⋅ π 2 , n为正偶数 n − 1 n ⋅ n − 3 n − 2 ⋅ . . . ⋅ 2 3 , n为大于1的奇数 \int_{0}^{\frac{\pi}{2}}\sin^nx~dx=\int_{0}^{\frac{\pi}{2}}\cos^nx~dx =\begin{cases} \frac{n-1}{n}·\frac{n-3}{n-2}·...·\frac{1}{2}·\frac{\pi}{2} ,&\text{n为正偶数}\\ \frac{n-1}{n}·\frac{n-3}{n-2}·...·\frac{2}{3} ,&\text{n为大于1的奇数}\\ \end{cases} 02πsinnx dx=02πcosnx dx={nn1n2n3...212π,nn1n2n3...32,n为正偶数n为大于1的奇数

∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x , 其中f(x)连续 \int_{0}^{\pi}xf(\sin x)dx=\frac{\pi}{2}\int_{0}^{\pi}f(\sin x)dx,\text{其中f(x)连续} 0πxf(sinx)dx=2π0πf(sinx)dx,其中f(x)连续

反常积分

1. 无穷区间上的反常积分:

常用结论:
∫ a + ∞ 1 x p d x , { p > 1 , 收 敛 ( a > 0 ) p ≤ 1 , 发 散 \int ^{+\infty}_a \frac{1}{x^p}dx, \begin{cases} p>1,收敛\\ &(a>0)\\ p\leq 1,发散 \end{cases} a+xp1dx,p>1,p1,(a>0)
2. 无界函数的反常积分:

常用结论:
∫ a b 1 ( x − a ) p d x , { p < 1 , 收 敛 p ≥ 1 , 发 散 ∫ a b 1 ( b − x ) p d x , { p < 1 , 收 敛 p ≥ 1 , 发 散 \int ^{b}_a \frac{1}{(x-a)^p}dx, \begin{cases} p<1,收敛\\ &\\ p\geq 1,发散 \end{cases} \\ \\ \int ^{b}_a \frac{1}{(b-x)^p}dx, \begin{cases} p<1,收敛\\ &\\ p\geq 1,发散 \end{cases} ab(xa)p1dx,p<1,p1,ab(bx)p1dx,p<1,p1,

定积分应用

1. 平面图形的面积:

(1)若平面域 D 由曲线 y=f(x),y=g(x) (f(x)≥g(x),x=a,x=b (a<b)所围成,则平面域D的面积为:
S = ∫ a b [ f ( x ) − g ( x ) ] d x S=\int^b_a[f(x)-g(x)]dx S=ab[f(x)g(x)]dx
(2)若平面域 D 由曲线 r=r(θ),θ=a,θ=β (a<β)所围成,则其面积为:
S = 1 2 ∫ α β r 2 d θ S=\frac{1}{2}\int^β_\alpha r^2dθ S=21αβr2dθ
2. 旋转体体积:

若区域 D 由曲线 y=f(x) (f(x)≥0)和直线 x=a,x=b (0≤a<b)及x轴所围成,则

(1)区域D绕 x 轴旋转一周所得到的旋转体体积为:
V x = π ∫ a b f 2 ( x ) d x V_x=\pi \int^b_a f^2(x)dx Vx=πabf2(x)dx
(2)区域D绕 y 轴旋转一周所得到的旋转体体积为:
V y = 2 π ∫ a b x f ( x ) d x V_y=2\pi \int^b_a x f(x)dx Vy=2πabxf(x)dx
3. 曲线弧长:

(1)C:y = y(x),a ≤ x ≤ b.
s = ∫ a b 1 + y ′ 2 d x s=\int^b_a \sqrt {1+y'^2} dx s=ab1+y2 dx

( 2 )   C : { x = x ( t ) , α ≤ t ≤ β y = y ( t ) , s = ∫ α β r + r ′ 2 d θ (2)~C:\begin{cases} x=x(t),\\ &\qquad\qquad\alpha \leq t \leq \beta\\ y=y(t), \end{cases} \\\\ s=\int^\beta _\alpha \sqrt {r+r'^2} d\theta (2) C:x=x(t),y=y(t),αtβs=αβr+r2 dθ

4. 旋转体侧面积:

曲线 y=f(x) (f(x)≥0)和直线x=a,x=b (0≤a<b)及x轴所围成区域绕x轴旋转,所得旋转体的侧面积为:
S = 2 π ∫ a b f ( x ) 1 + f ′ 2 ( x ) d x S=2\pi \int^b_a f(x)\sqrt {1+f'^2(x)} dx S=2πabf(x)1+f2(x) dx

微分方程

可分离变量的方程

g ( y ) d y = f ( x ) d x 求解方法:两端积分 d y d x = f ( x ) g ( y ) ∫ d y g ( y ) = ∫ f ( x ) d x + C g(y)dy=f(x)dx\\ \text{求解方法:两端积分}\\ {\frac{{ \text{d} y}}{{ \text{d} x}}=f{ \left( {x} \right) }g{ \left( {y} \right) }}\\ {{}_{ }^{ } \int _{ }^{ }\frac{{ \text{d} y}}{{g{ \left( {y} \right) }}}={}_{ }^{ } \int _{ }^{ }f{ \left( {x} \right) } \text{d} x+C} g(y)dy=f(x)dx求解方法:两端积分dxdy=f(x)g(y)g(y)dy=f(x)dx+C

一阶线性非齐次微分方程

d y d x + p ( x ) y = f ( x ) u = ∫ p ( x ) d x y = C e − u + e − u ∫ f ( x ) e u d x { {\frac{{ \text{d} y}}{{ \text{d} x}}+p{ \left( {x} \right) }y=f{ \left( {x} \right) }}\\ {u={}_{ }^{ } \int _{ }^{ }p{ \left( {x} \right) } \text{d} x} }\\ {y=C\mathop{{e}}\nolimits^{{-u}}+\mathop{{e}}\nolimits^{{-u}}{}_{ }^{ } \int _{ }^{ }f{ \left( {x} \right) }\mathop{{e}}\nolimits^{{u}} \text{d} x} dxdy+p(x)y=f(x)u=p(x)dxy=Ceu+euf(x)eudx

伯努利方程

形如 d y d x + p ( x ) y = f ( x ) y n ( n ≠ 0 , 1 ) 称为伯努利方程,是一种非线性的一阶微分方程 将伯努利方程两端除以 y n ,得 y − n d y d x + p ( x ) y 1 − n = f ( x ) 令 z = y 1 − n 有 d z d x = ( 1 − n ) y − n d y d x 1 1 − n d z d x + p ( x ) z = f ( x ) 则原方程化为线性方程进行求解 {\text{形}\text{如}}\\ {\frac{{ \text{d} y}}{{ \text{d} x}}+p{ \left( {x} \right) }y=f{ \left( {x} \right) }\mathop{{y}}\nolimits^{{n}}{ \left( {n \neq 0,1} \right) }}\\ {\text{称}\text{为}\text{伯}\text{努}\text{利}\text{方}\text{程}\text{,}\text{是}\text{一}\text{种}\text{非}\text{线}\text{性}\text{的}\text{一}\text{阶}\text{微}\text{分}\text{方}\text{程}}\\ {\text{将}\text{伯}\text{努}\text{利}\text{方}\text{程}\text{两}\text{端}\text{除}\text{以}\mathop{{y}}\nolimits^{{n}}\text{,}\text{得}}\\ {\mathop{{y}}\nolimits^{{-n}}\frac{{ \text{d} y}}{{ \text{d} x}}+p{ \left( {x} \right) }\mathop{{y}}\nolimits^{{1-n}}=f{ \left( {x} \right) }}\\ {\text{令}z=\mathop{{y}}\nolimits^{{1-n}}\text{有}}\\ {\frac{{ \text{d} z}}{{ \text{d} x}}={ \left( {1-n} \right) }\mathop{{y}}\nolimits^{{-n}}\frac{{ \text{d} y}}{{ \text{d} x}}}\\ {\frac{{1}}{{1-n}}\frac{{ \text{d} z}}{{ \text{d} x}}+p{ \left( {x} \right) }z=f{ \left( {x} \right) }}\\ {\text{则}\text{原}\text{方}\text{程}\text{化}\text{为}\text{线}\text{性}\text{方}\text{程}\text{进}\text{行}\text{求}\text{解}} dxdy+p(x)y=f(x)yn(n=0,1),线yn,yndxdy+p(x)y1n=f(x)z=y1ndxdz=(1n)yndxdy1n1dxdz+p(x)z=f(x)线

全微分方程

若方程 P ( x , y ) d x + Q ( x , y ) d y = 0 的左端是某函数的全微分方程,即 d u ( x , y ) = P ( x , y ) d x + Q ( x , y ) d y = 0 其中 { ∂ u ∂ x = P ( x , y ) ∂ u ∂ x = Q ( x , y ) 则 u ( x , y ) = C 是原方程的通解 {\text{若}\text{方}\text{程}}\\ {P{ \left( {x,y} \right) } \text{d} x+Q{ \left( {x,y} \right) } \text{d} y=0}\\ {\text{的}\text{左}\text{端}\text{是}\text{某}\text{函}\text{数}\text{的}\text{全}\text{微}\text{分}\text{方}\text{程}\text{,}\text{即}}\\ { \text{d} u{ \left( {x,y} \right) }=P{ \left( {x,y} \right) } \text{d} x+Q{ \left( {x,y} \right) } \text{d} y=0}\\ {\text{其}\text{中}}\\ { \left\{ {\frac{{ \partial u}}{{ \partial x}}=P{ \left( {x,y} \right) }}\\ {\frac{{ \partial u}}{{ \partial x}}=Q{ \left( {x,y} \right) }} \right. }\\ {\text{则}}\\ {u{ \left( {x,y} \right) }=C}\\ {\text{是}\text{原}\text{方}\text{程}\text{的}\text{通}\text{解}} P(x,y)dx+Q(x,y)dy=0,du(x,y)=P(x,y)dx+Q(x,y)dy=0{xu=P(x,y)xu=Q(x,y)u(x,y)=C

二阶常系数非齐次线性微分方程

对二阶方程 y ′ ′ + p y ′ + q y = f ( x ) 先求对应齐次方程 y ′ ′ + p y ′ + q y = 0 的通解 y ,再根据 f ( x ) 求另一个特解 y 0 {\text{对}\text{二}\text{阶}\text{方}\text{程}}\\ {y '' +p{y \prime }+qy=f{ \left( {x} \right) }}\\ {\text{先}\text{求}\text{对}\text{应}\text{齐}\text{次}\text{方}\text{程}}\\ {y '' +p{y \prime }+qy=0}\\ {\text{的}\text{通}\text{解}y\text{,}\text{再}\text{根}\text{据}f{ \left( {x} \right) }\text{求}\text{另}\text{一}\text{个}\text{特}\text{解}\mathop{{y}}\nolimits_{{0}}} y+py+qy=f(x)y+py+qy=0y,f(x)y0

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值