通过人工智能识别多种可燃有害气体及其浓度水平的电子鼻

通过人工智能识别多种可燃/有害气体及其浓度水平的电子鼻

ABSTRACT

识别可燃气体对确保宜居环境并防止危害人类安全至关重要。大多数以前的电子鼻(E-Nose)研究旨在识别气体或其浓度水平。此外,它们没有从各个领域提取特征或应用特征选择(FS)技术。本文介绍了一种名为GasCon-Enose的智能电子鼻,使用人工智能来识别气体类型和浓度水平。GasCon-Enose从五个金属氧化物半导体(MOS)传感器中提取时间域、频率域和时频域的特征。它将这些特征融合在一起,并研究它们对识别性能的影响。此外,它引入了混合特征选择方法。结果显示,**在混合FS之后,******气体类型识别和浓度水平识别的峰值准确率分别为99.73%和97.54%。****GasCon-Enose的性能证明了它的可靠性,能够作为在智能城市环境中进行可燃气体感知和浓度水平识别的平台使用。

INTRODUCTION

识别可燃/有害气体对确定环境是否适宜居住至关重要。空气中可能含有可燃气体,这些气体具有危险性,可能直接影响人类健康。**这些气体的例子包括丁烷(C4H10)、甲烷(CH4)、丙烷(C3H8)和氢气(H2)。**可燃气体还可能导致火灾和爆炸,从而对人类造成伤害[1]。因此,识别这些气体及其浓度水平对于避免可能危害人类健康的人类危险至关重要。

**电子鼻(E-Nose)是一种通过化学传感器进行气体和气味感知和识别的系统[2,3]。**E-Nose可以模拟人的嗅觉[4]。电子鼻由两个主要子系统组成,即特征提取和人工智能(AI)。随着人工智能技术的最新发展,AI在包括医疗保健[5,6]、医学[7,8]、金融[9,10]、导航[11]等多个领域取得了成功。正确选择适当的特征提取和AI技术可以实现高效的电子鼻。最近,电子鼻已广泛与人工智能一起在不同应用中使用,如农业[12,13]、有毒气体的识别[14]、爆炸物的早期检测[15]、食品和空气质量的识别[16–18]以及多种疾病的诊断[19–21]。

本文提出了一种名为GasCon-Enose的电子鼻,用于识别多种可燃/有害气体及其浓度水平。**GasCon-Enose使用了多种领域的人工智能技术和特征提取方法。**然后,它引入了一种混合特征选择技术,以从这些特征中选择对识别性能影响最大的特征。**这些特征用于供给三个机器学习分类器进行识别步骤。**论文的组织如下。它从第2节开始,**介绍并讨论了关于气体类型/浓度识别的文献综述。**然后,**第3节介绍了使用的材料和方法,以及提出的GasCon-Enose。**第4节展示了用于评估GasCon-Enose性能的性能度量标准。随后,**第5节展示和讨论了结果。**最后,第6节进行了总结。

Literature review

电子鼻通常由一组传感器组成,已经证明与单一传感器相比,更有效地用于识别多种气体 [22–24]。这个多传感器阵列可以包括不同类型的传感器,但其中金属氧化物半导体(MOS)传感器是气体识别和浓度识别领域最常用的类型 [25]。这是因为MOS传感器紧凑、易于制造和使用、价格低廉、敏感性高且寿命长 [26,27]。例如,张等人 [22] 使用了6个MOS传感器来检测一种混合干扰气体(包括H2和甲醛(CH2O))中的一氧化碳(CO)和甲烷(CH4)的浓度水平。作者从每个传感器中提取了包括在清洁气体室之前的最大响应、电阻比和峰值面积在内的三个时间特征。这些特征被馈送到**线性判别分析(LDA)、主成分分析(PCA)和人工神经网络(ANN)**模型中,使用ANN获得了CO的最大识别准确率为78.92%,CH4的为89.75%。同样,张等人 [28] 基于相同的6个MOS传感器设计了一个E-Nose来识别CO、CH4以及CH2O。**作者提取了包括面积和拟合曲线系数、频率特征(如FFT的直流分量)以及小波域特征的时间特征。**这些特征被用作支持向量机(SVM)分类器的输入,获得了CO的识别准确率为98.73%,CH4的为100%,CH2O的为97.46%。此外,Sabilla等人 [4] 利用MOS传感器实施了一种E-Nose来检测气体浓度,使用了斜率偏差和ANN,获得了0.0433的均方根误差。Manjula等人 [29] 提出了一种基于3个MOS传感器的E-Nose,用于识别出现在空气中的丙酮和CO气体。作者使用时间信号作为特征,输入了五种机器学习分类器,在RF分类器下达到了97.7%的最高准确度。Ragila等人 [30] 利用6个MOS传感器检测大气中的CO和CH4。作者使用时间信号作为ANN的输入,获得了93.33%的准确度。此外,[31] 中的作者设计了一个智能E-nose,基于四个MOS传感器,用于识别大气中的一氧化氮和二氧化氮的不同浓度水平。**作者使用传感器测量的时间信号作为PCA模型的输入。[32] 这项研究旨在使用四个MOS传感器区分四种燃烧气体(CO、CH4、乙醇和乙烯)的浓度水平。**这些气体的时间特征从长短时记忆模型中提取,并将最大传感器响应作为多个机器学习分类器的输入,使用SVM分类器获得了90.8%的最高准确度。另一方面,黄和吴 [33] 实施了一个使用6个MOS传感器的E-Nose系统,用于识别空气中的挥发性有机化合物(VOC),包括丙酮、异丙醇(IPA)和乙醇。**他们提取了三相特征和两个时间特征,然后将这些特征馈送到ANN模型中,达到了82.6%的准确度。**类似地,黄等人 [34] 设计了一个便携式E-Nose系统,使用10个MOS传感器识别大气中的VOC。他们使用离散时间信号作为SVM分类器的输入,获得了93.3%的准确度。此外,[35] 中的作者实施了一种E-Nose,用于识别猪舍和鸡舍中的VOC。他们使用这些传感器测量的离散时间样本作为K最近邻(KNN)和SVM分类器的输入,使用SVM分类器获得了93.33%的最高准确度。

Methods and materials

监测和分析气体可以通过各种类型的传感器进行,然而,由于其低成本、长寿命、紧凑尺寸、安全性、简单性和高灵敏度,MOS传感器更受青睐。此外,已经在多项研究中证明,融合多个传感器的响应比使用单个传感器更好,因为它可以达到更高的准确性。此外,组合传感器可以调整使用单一传感器引起的非线性、低灵敏度和其他问题 [39]。因此,在这项研究中,采用了五个商业MOS传感器来构建所提出的GasCon-Enose。这些传感器包括TGS 4160、TGS 813、TGS 2600、TGS 822和TGS 3870,供电电压为5 V,并带有加热系统。此外,温度和湿度传感器用于构建所提出的E-Nose系统。这五个传感器对目标气体具有交叉敏感性;因此,识别模型将被训练用于分类目标气体类型和浓度水平。

  • TGS 822是由二氧化锡(SnO2)制成的半导体。传感器的导电性与气体浓度成正比。它对有机溶剂和燃烧气体非常敏感。
  • TGS 2600是一种传感器,由金属氧化物半导体涂层制成,涂层附着在感应芯片的氧化铝基底上,带有一个加热器。
  • TGS 3870是一种由金属氧化物半导体制成的传感器,植入了微球气体感测成分。
  • TGS 4160是一个基于混合物的传感器组件,包括一部分二氧化碳敏感部分和一个热敏电阻。
  • TGS 813是一种著名的金属氧化物传感器,由二氧化锡(SnO2)制成,用于识别可燃气体。它对甲烷、丁烷、丙烷和液化石油气非常敏感。

这些传感器来自“Figaro”工业公司。它们的特点是寿命长、成本低、功耗低、结构简单、对可燃气体非常敏感,并且在市场上易于获得。因此,它们在本研究中得到了应用。

GasCon-Enose 系统制造

所提出的GasCon E-nose由一个体积为475 cm³的传感器腔室、气体瓶质量流量控制器和加热系统组成。在这个实验中使用了五种气体,**包括CO₂、CH₄、H₂、C₄H₁₀和C₃H₈。尽管CO₂不是可燃气体,但高浓度的CO₂可以导致心率增加、窒息、晕厥、惊恐和记忆障碍。此外,CO₂的增加和长时间暴露限制可以导致窒息死亡。因此,它被视为有害气体。传感器的测量是在相对湿度为45%的条件下进行的。这五个传感器组合在一起形成一个由带有进出口门的腔体封闭的阵列。输入门与质量流量控制器相关联,用于在用饱和空气清洁腔室后监测气体浓度。**这五个传感器暴露在与环境温度及以上变化的温度下。温度是特征值,因为使用了加热器逐渐改变温度,而不是随机的。这个温度范围覆盖了获取数据的国家的典型温度。所有测量都在不同的温度条件下进行,从室温及以上(27-43°C)。这五个传感器串联连接到位于腔体外的五个可变电阻器上。这些电阻器放置在微控制器旁边,用于观察和管理每个传感器的响应。**每个传感器的电阻值分别为1 KΩ、3 KΩ、5 KΩ和7 KΩ。微控制器的采样频率为0.05 Hz。测量是在四个浓度水平下进行的,分别对应于100 ppm、400 ppm、700 ppm和1000 ppm,分别称为级别1到4,以调节传感器内气体的吸附速度。**实验中使用的微控制器是带有(A/D)转换器的Pic 16F 628A。获取的数据通过串行端口RS 232传输,比特率为2400。用于编程微控制器的软件是C语言。接下来,每个传感器测量的电压被收集并存储。每种气体都被注入到腔体中,同时通过质量流量控制器监测其浓度。系统的输出被传送到个人计算机。所提出的GasCon-Enose的尺寸为20 cm × 15 cm。GasCon-Enose的框图如图1所示。此外,GasCon-Enose的实际结构已添加到附加材料中。所有的测量和实验都是在一家石油公司的实验室中进行的,受到了限制和受限制的条件。这些测量条件,如具体的温度值和浓度值,是石油公司提供的唯一可用值(真实测量值)。该公司为我们提供了用于本研究的气体,在限制的温度和浓度测量下使用。

GasCon-Enose 系统处理

GasCon-Enose系统包括3个处理步骤,分别是特征提取、特征选择和分类。在特征提取步骤中,从每个传感器中提取三种类型的特征,包括时间域、频率域和时频域。然后,**进行了多种特征选择方法,以降低特征维度并选择一组减少的特征。**最后,在识别步骤中,将三种知名的机器学习分类器用提取的整套特征进行训练。接下来,这些分类器在特征选择步骤中使用减少的特征集进行训练。图2显示了GasCon-Enose处理步骤的块图。

Feature extraction

在特征提取步骤中,使用五个传感器测得的离散时间电压信号作为特征。此外,还使用了希尔伯特变换和短时傅里叶变换(STFT)[40]来从这些信号中提取其他频率特征。此外,还使用了离散小波变换(DWT)来提取时频特征。传感器的测量是在四个浓度级别下进行的,这些浓度在识别气体类型的情况下被视为特征除了这些特征,温度也被视为一个特征。最后,电阻器的值也被视为一个特征。

  • **离散小波变换(DWT)利用称为“小波”的正交基函数来表示和探索输入数据[41]。**在1-D信号的情况下,DWT技术通过卷积过程实现,将时间输入信号与低通和高通滤波器进行卷积[42,43]。接下来,执行降采样过程,将输入数据的大小减小2倍[44,45]。因此,创建了两个子集,称为近似量CA1和细节量CD1。本文使用“Haar”小波母函数并使用CA1和CD1系数。

  • **离散希尔伯特变换(DHT)是一种众所周知的特征提取方法,用于分析信号并在频域中表示它们[46]。**DHT分为几个阶段进行:首先计算输入信号的傅里叶变换。接下来,丢弃负频率。最后,计算反向傅里叶变换,得到表示DHT的一对复值。在本文中,计算了DHT的幅度,并将其视为每个传感器的特征。没有对参数进行微调。

  • **短时傅里叶变换(STFT)是一种由Gabor于1946年引入的著名信号处理技术[47]。**STFT的主要原则是选择足够小的分析窗口,将信号视为静止。因此,可以在该信号的窗口上应用传统的FFT。对于其他信号块,可以应用类似的分析。STFT是所选窗口的定期平移确定的重复信号块的FFT。在本文中,使用了窗口大小为128个样本且重叠为96个样本的“Hann”窗口。

Feature selection

**特征选择(FS)**的过程对于降低特征空间的维度以及选择影响分类器的识别性能的变量非常重要[48]。它消除了不相关和多余的特征。FS还降低了识别速度和识别模型的复杂性[49,50]。它还可以避免在分类器的训练过程中可能发生的过拟合[51]。FS分为三类,即Filter、Wrapper和Hybrid[52,53]。在前一类中,特征根据特定的度量标准进行排序。排名较高的特征最相关。Filter FS方法快速且简单,但不参与分类或识别过程。另一方面,wrapper FS方法依赖于分类过程,并包裹在分类器周围。但是,这些方法比Filter FS类慢。最后,混合类是Filter和Wrapper方法的结合体。它们结合了两个FS类的优点,因此在本文中使用。

提出的混合FS方法包括基于相关性的FS[54]过滤方法和依赖于三种顺序特征搜索(SFS)策略的包装FS方法。首先,特征根据基于相关性的FS过滤器方法的相关性度量进行排序。然后,此排名用于指导包装FS方法的三种SFS策略。这三种SFS策略分别是前向、后向和双向。在前向SFS策略中,特征搜索从排名最高的特征开始,然后迭代添加特征。增强识别性能的特征被保留,而降低性能的特征被省略。**相反,在后向SFS中,搜索从整个特征集开始,然后迭代地忽略排名较低的特征。只有能提高识别性能的特征才会被保留。**最后,在双向SFS中,搜索在前向和后向搜索之间交替进行。最初,它从所有特征开始,然后迭代地将忽略的特征添加到搜索策略中。在搜索特征空间中的所有特征之后结束。

Identification

GasCon-Enose的识别步骤中使用了三种流行的机器学习分类器,包括KNN、SVM和RF分类器。此步骤由两个阶段组成:**气体识别阶段和浓度水平识别阶段。在气体识别阶段,该阶段的目标是检测每种气体类型。这些气体包括CO2、CH4、H2、C4H10和C3H8。而在浓度水平识别方面,该阶段旨在识别气体的浓度水平。有四个浓度水平,分别对应于100 ppm、400 ppm、700 ppm和1000 ppm,**分别标为级别1到4。KNN分类器的K-邻居数为1,距离度量为欧几里得距离。SVM分类器使用的核函数是Pearson universal VII核[55]。采用了顺序最小优化算法[56]来训练SVM分类器。RF分类器的最大分裂次数为100。使用10折交叉验证方法来验证GasCon-Enose的性能。在每次10折交叉验证的迭代中,使用1146个测量值进行训练,使用127个测量值进行测试。GasCon-Enose的处理步骤是使用Weka软件[57]和Matlab 2020a实现的。

Performance metrics

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Results and discussion

Responses of the gas sensors

在E-nose的制造和数据收集之后,进行了数据分析,以确定温度(T)与每个传感器的输出电压之间的关联。图3显示了在负载电阻(R)等于1 KΩ和浓度水平等于100 PPM时,每个传感器对每种气体的响应(输出电压)。从图中可以看出,对于C4H10和CH4气体,除了TGS 813和TGS 3870之外,所有传感器在增加T时V变化很小,其中TGS 3870具有最大的输出响应。外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

相反,对于CO2和H2气体,图3(b和c)显示V与T成反比关系,对于所有传感器都是如此,其中TGS 4160具有最低的输出响应。另一方面,对于C3H8气体(图3(e)),TGS 822、TGS 2600和TGS 4160传感器的输出电压在T变化时略有变化。然而,对于TGS 813传感器,V随着T增加,而TGS 3870则相反。

无需特征选择即可识别气体和浓度水平

在本节中,将呈现和说明了没有特征选择的情况下气体类型识别和气体浓度水平阶段的结果。两个阶段的分类结果在四种情况下进行。**首先,在第一种情况下,使用五个传感器的离散时间测量作为特征,以及电阻值(R)、浓度(C)和温度(T)变量,将它们输入到KNN、SVM和RF分类器中。**接下来,在第二种情况下,**使用使用DHT提取的STFT和希尔伯特频率特征,以及电阻值、浓度和温度特征作为输入,来训练KNN、SVM和RF分类器。然后,使用DWT提取的时频特征,以及电阻值、浓度和温度变量,来训练KNN、SVM和RF分类器。**最后,在最后一种情况下,将离散时间测量、DHT、STFT和DWT特征融合在一起,并用于训练三个分类器。图4说明了在进行特征选择之前实现分类结果的四种情况。外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

从图5中可以看出,与第一、第二和第三种情况相比,**第四种情况中的离散时间、DHT、STFT、DWT、T、C和R的特征融合已经提高了三个分类器的气体类型识别准确性。**这显而易见,因为使用第四种情况的特征,**RF、KNN和SVM分别获得了98.88%、98.22%和97.82%的准确率。**这些准确性高于使用相同分类器的第一种情况特征(96.93%、93.23%、88.513%)和第二种情况特征(97.32%、92.37%、88.82%)以及第三种情况特征(74.74%、69.15%、66.87%)获得的准确性。**图5显示,对于气体类型识别,频率特征(第二种情况)略高于离散时间测量(第一种情况),但比DWT的时频特征(第三种情况)具有更高的准确性。**此外,图5证明了将时间特征与频率和时频特征相结合能够提高所提出的E-Nose的性能。外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

对于气体浓度水平识别阶段,图6显示了使用四种情况获得的准确性。图6证实,情景IV中呈现的特征融合已经提高了准确性,相对于情景I、II和III中的特征。这很明显,因为使用情景IV特征训练的分类器分别使用RF、KNN和SVM模型获得了94.61%、86.63%和80.53%的准确率。这些准确性高于使用相同分类器的情景I(93.55%、77.14%、68.42%)、情景II(87.82%、76.98%、64.1%)和情景III(54.83%、50.8%、38.5%)获得的准确性。**图6表明,对于气体浓度水平识别阶段,频率特征(情景II)与离散时间测量(情景I)具有可比性的性能,但频率特征比DWT的时频特征(情景III)更重要,性能也更高。**此外,图6证明,将来自多个领域(情景IV)的特征结合在一起比使用单一领域的单一特征更好。外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

**图7显示了气体类型和浓度水平识别阶段的混淆矩阵。**对于气体类型识别阶段,图7显示对于KNN分类器,1次C4H10的测量被错误识别为CO2,2次CO2的测量被错误识别为C4H10,10次H2的测量被错误识别为CH4,2次H2的测量被错误识别为CO2,11次CH4的测量被错误识别为H2,而所有C3H8的测量均被正确识别。另一方面,对于SVM分类器,1次C4H10的测量被错误识别为CO2,2次CO2的测量被错误识别为C4H10,10次H2的测量被错误识别为CH4,2次H2的测量被错误识别为CO2,11次CH4的测量被错误识别为H2,1次CH4的测量被错误识别为C3H8,而所有C3H8的测量都被正确识别。而对于RF分类器,1次C4H10的测量被错误识别为CO2,1次C4H10的测量被错误分类为C3H8,2次CO2的测量被错误识别为H2,1次CO2的测量被错误分类为C4H10,3次H2的测量被错误识别为CH4,1次H2的测量被错误识别为CO2,2次H2的测量被错误识别为C4H10,2次CH4的测量被错误分类为H2,而2次C3H8的测量被错误分类为H2。图7表明,RF分类器的性能最好,其次是KNN分类器。

如前所述,**本研究使用的四个气体浓度水平分别是100 ppm、400 ppm、700 ppm和1000 ppm,对应于1级、2级、3级和4级。**图7显示,KNN分类器错误识别了23次100 ppm浓度的测量。其中4、10和9次分别被错误识别为400 ppm、700 ppm和1000 ppm。此外,对于400 ppm浓度水平,有38次测量被错误识别,其中5次、27次和6次分别被错误分类为100 ppm、700 ppm和1000 ppm。此外,对于700 ppm浓度,有66次测量被错误识别,其中14次被错误识别为100 ppm、27次另一方面,图7表明,SVM分类器错误分类了44个100 ppm浓度水平的测量,其中8个被错误识别为400 ppm,23个被错误分类为700 ppm,13个被错误分类为1000 ppm。此外,有42次400 ppm浓度水平的测量被错误分类,其中7次被错误分类为100 ppm,31次被错误分类为700 ppm,4次被错误分类为1000 ppm。此外,SVM分类器错误分类了19个700 ppm浓度水平的测量,其中有14个被错误识别为100 ppm,27个被错误分类为400 ppm,33个被错误分类为1000 ppm。同样,SVM分类器错误识别了19个1000 ppm浓度水平的测量,其中有2个被错误分类为100 ppm,4个被错误分类为400 ppm,35个被错误分类为1000 ppm。最后,图7显示,RF分类器错误分类了8个100 ppm浓度水平的测量,其中1个属于400 ppm,3个属于700 ppm,5个属于1000 ppm。此外,有19个400 ppm浓度水平的测量被错误识别,其中有4个被错误分类为100 ppm,11个被错误分类为700 ppm,4个被错误分类为700 ppm。此外,有25个700 ppm浓度水平的测量被错误识别,其中4个被错误识别为100 ppm,9个被错误分类为400 ppm,12个被错误分类为1000 ppm。此外,对于1000 ppm浓度水平,有17个测量被错误识别,其中有2个被错误识别为100 ppm,4个被错误分类为400 ppm,11个被错误分类为700 ppm。图7显示,RF分类器具有更高的识别浓度水平的能力,优于KNN和SVM分类器。外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

特征选择后的气体和浓度水平识别

这一部分展示了所提出的混合特征选择(FS)方法的结果,该方法用于从方案IV的特征中选择一组减少的特征(方案IV的特征是方案I、II和III的融合特征)。混合方法首先使用基于相关性的FS方法对方案IV的特征进行排序。然后,它使用此排序来执行三种包围KNN、SVM和RF分类器的SFS策略(前向、后向和双向)。

表1显示了利用三种SFS方法的气体类型和浓度水平识别准确性。首先,在气体类型识别方面,表1显示前向和双向SFS策略对于RF和SVM分类器具有相同的准确性,分别为99.17%和99.07%,而对于KNN,双向SFS策略的准确性为99.73%,高于前向SFS策略的99.55%。而对于后向SFS策略,获得的准确性分别为99.19%、99.71%和99.07% ,对于RF、KNN和SVM模型来说。外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

**表1显示,在气体类型识别阶段,采用所提出的混合FS的三个搜索策略后,准确性较之前FS之前的准确性有所提高。**这证明了混合FS可以通过构建具有较少特征数量的模型来提高性能并降低训练模型的复杂性。这一点很明显,因为用于训练三个分类器的特征数量为23,而在混合FS之后使用的特征数量在图8中显示为10到14不等。

另一方面,对于气体浓度水平识别阶段,KNN分类器使用前向、后向和双向SFS方法获得了最高的准确性,分别为97.54%。**其次是RF,使用后向、双向和前向SFS方法分别达到了97.39%、97.38%和97.36%的准确性。**最后,SVM使用后向、前向和后向SFS策略获得了最低的准确性,分别为82.03%、82.63%和82.67%。

表1中的结果表明,在经过混合FS的三种搜索策略后,获得的识别准确性比FS之前的准确性更高。这些结果证实了所提出的混合FS方法提高了浓度水平识别准确性,并成功减少了浓度水平识别阶段的特征数量,从而降低了训练模型的复杂性。这一点很明显,因为在FS之前的特征数量为23,在所提出的混合FS之后的特征数量在图8中显示为10到16不等。

值得一提的是,经过FS后,**KNN分类器的准确性显著提高了近9%,而对于RF和SVM来说,准确性的提高分别接近3%和2%。这意味着KNN的性能受到用于训练的特征的影响很大。**此外,**尽管在FS过程后SVM的性能有所提高,但它在识别气体浓度水平方面的准确性仍然低于RF和KNN分类器。**因此,SVM在识别气体浓度水平方面不够可靠。

其他评估指标也被计算出来,以测试所提出的GasCon-Enose的性能。表2展示了双向SFS策略后的气体类型和浓度水平识别阶段的性能指标。表中显示RF、KNN和SVM分类器在气体识别阶段实现的灵敏度(0.9915、0.9976、0.9908)、特异性(0.9976、0.9999、0.9971)、精确度(0.993、0.998、0.991)、F1分数(0.993、0.998、0.991)。灵敏度是分类器准确分类数据的类标签的能力,而特异性是其分类其他类别的能力。**F1分数和精确度是评估不平衡数据集中分类器性能的非常重要的指标。精确度指标确定了少数类别标签的准确性,而F1结合了精确度和灵敏度指标。**换句话说,F1-分数表示了精确度和灵敏度之间的平衡。对于气体类型识别阶段,表2中的结果表明,三个分类器都具有高度识别每种气体类型的能力,因为它们的灵敏性、特异性、精确性和F1-分数都超过95%。这些结果证明了系统是可靠的,可以用于准确检测气体类型。

另一方面,对于浓度水平识别阶段,RF、KNN和SVM模型分别获得了灵敏度(0.9739、0.9754、0.827)、特异性(0.9913、0.9916、0.9414)、精确度(0.9739、0.9754、0.829)、F1分数(0.9739、0.9754、0.8285)。结果显示,GasCon-Enose在单独识别每种浓度水平方面的能力略低,因为在浓度水平识别阶段获得的灵敏性和精确性稍低于特异性。表2显示,KNN分类器识别气体浓度水平的能力最低,因为它的灵敏度、特异性、精确度和F1分数都低于95%。然而,对于RF和KNN分类器,它们都获得了高于95%的灵敏度、特异性、精确度和F1分数,使它们能够可靠地识别气体浓度水平。

CONCLUSION

检测可燃气体及其浓度水平对于避免影响人类福祉和安全至关重要。**本文提出了一种名为GasCon-Enose的E-Nose系统,基于人工智能技术,用于识别可燃气体类型和气体浓度水平。**GasCon-Enose利用了包括KNN、SVM和RF分类器在内的三种机器学习分类器。所提出的E-Nose从五个MOS传感器中提取了来自三个领域的不同特征。GasCon-Enose融合了这三种类型的特征,并显示特征融合能够提高结果。**此外,GasCon-Enose提出了一种基于三种SFS策略的混合特征选择方法。****结果验证了混合特征选择方法提高了三个分类器的性能。**对于气体类型识别,KNN分类器表现最佳,而对于浓度水平识别,则使用RF模型获得了最佳性能。**使用GasCon-Enose获得的结果证实了其在检测可燃气体类型和浓度水平方面的强大能力。**它还证明了这是一个可靠的系统,可用于智能城市。本研究未考虑识别混合气体的浓度水平。未来的工作将专注于半定量、瞬时和抗干扰的混合有害/可燃气体及其浓度水平的识别。此外,即将进行的实验将研究同时识别更多气体和浓度水平的可能性。**本研究未考虑在不断变化的环境条件下进行气体检测的典型工作。未来的工作将考虑用于开放采样系统中检测气体响应信号变化点的金属氧化物气体传感器信号的变化检测。此外,未来的工作将考虑改变温度范围,并研究这种范围对所提出模型性能的影响。最后,将探索深度学习技术,以识别气体和浓度水平。

  • 2
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱学习的香农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值