大气污染溯源是环境科学领域的一项重要工作,它涉及到识别和追踪大气中的污染物来源及其传播路径。下面是一个优化排版的大气污染溯源基础概念知识概述:
1. 大气污染溯源基础概念知识
污染源识别
- 自然源:火山爆发、沙尘暴、森林火灾等产生的烟尘
- 人为源:工业排放、汽车尾气、农业燃烧、燃煤电厂、建筑活动
化学与物理分析
- 对大气样本(如降水、颗粒物、气溶胶体、气体)进行化学成分分析
- 识别污染物种类:二氧化硫、氮氧化物、臭氧族化合物、重金属、挥发性有机化合物
同位素标记与分子标志物
- 使用稳定同位素和放射性同位素标记
- 分析分子标志物,如13H、13C、14N等,揭示污染物来源和传输路径
模型模拟
- 利用大气传输模型模拟污染物扩散过程
- 高斯羽烟模型
- WRF模型
- CMAQS模型
- 结合气象数据(风向、温湿度、压力、风速、逆温层)模拟污染物传播轨迹
遥感技术
- 利用卫星遥感、无人机、航空遥感图像分析大气污染状况
- 监测大范围污染分布:PM2.5、NOx、O3浓度
时空分析
- 结合时间序列分析和空间统计方法
- 使用GIS分析追踪污染变化趋势和空间分布
- 识别污染热点区域
数据融合与大数据
- 利用多源数据(环境监测站、移动监测、社会经济数据)融合分析
- 通过AI、机器学习算法提高溯源精度
大气污染溯源流程
大气污染溯源是一项跨学科工作,需要环境科学、化学、气象学、计算机科学、地理信息科学等多领域知识的综合应用。通过这些技术手段,可以准确找到污染源头,为政策制定和环保措施提供科学依据,减少大气污染对人体健康和环境的负面影响。
这个概述提供了大气污染溯源的基本概念和主要流程,有助于理解这一复杂过程的关键步骤和技术方法。
在大气污染溯源中,气象条件的融合对于提高污染物扩散模拟的准确性至关重要。下面是一个优化排版的关于融合气象条件进行溯源的介绍:
大气污染物超标监测是确保空气质量安全的重要环节。以下是对大气污染物超标异常报警监测的一般流程的优化排版:
2.1 站点污染物超标异常报警监测
实时监测与数据收集
- 在线监测设备:使用自动监测站和传感器网络。
- 监测对象:连续监测大气中的有害物质,包括:
- 二氧化硫氧化物(SOx)
- 氮氧化物(NOx)
- 颗粒物(PM2.5、PM10)
- 臭氧
- 异味等
数据验证与分析
- 质量控制:对收集到的数据进行校验,确保准确性和可靠性。
- 分析方法:
- 统计分析
- 趋势分析
- 时空分布分析
- 目的:识别污染物超标的原因。
超标预警
- 阈值预警系统:设定预警阈值。
- 触发机制:监测数据一旦超过阈值,立即触发预警。
- 可视化展示:实时显示高值预警站点。
2.2 融合气象条件溯源
污染物高斯扩散原理
环境科学中的高斯扩散模型
- 高斯模型用于模拟污染物在大气、水体或土壤中的扩散过程。
- 假设污染物浓度分布遵循高斯分布,指数下降随距离源的增加。
统计学中的高斯分布
- 描述自然界中随机变量的分布,如误差或测量误差。
高斯扩散方程
编程实现与应用领域
- 在编程语言(如.NET、Java等)中实现高斯模型。
- 应用于GIS、气象、大气科学、医疗、警务等领域。
示例应用验证
- 验证高斯模型在实际环境中的应用效果。
- 调整模型参数以适应具体的气象条件和地理环境。
通过融合气象条件,如风速、风向、温度、湿度和大气稳定性等,可以更准确地模拟污染物的扩散路径和浓度分布。这有助于提高大气污染溯源的精确度,为制定有效的污染控制策略提供科学依据。
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/21ea2f8db7934ef5affccea233267d88.png#pic_center
在污染溯源查找中,风速是一个关键的气象参数,它影响着污染物的扩散和传输。当风速小于1.5m/s时,污染物可能在较近的范围内累积。以下是对风速小于1.5m/s时查找周边25公里范围内企业的优化排版:
2.3 污染溯源查找
风速小于1.5m/s时的策略
周边企业排查
- 在风速小于1.5m/s的情况下,污染物扩散能力较弱,因此需要重点排查周边25公里范围内的企业。
步骤
- 收集信息:收集25公里范围内所有企业的基本信息和排放数据。
- 初步筛选:根据企业的排放记录和生产活动,进行初步筛选,确定可能的污染源。
- 现场调查:对筛选出的企业进行现场调查,检查排放设施和控制措施。
- 数据对比:将现场调查结果与监测数据进行对比,以确认污染源。
- 综合评估:综合考虑企业的排放量、排放类型、地理位置等因素,评估其对污染的贡献。
风速1.5m/s以上查找上下风口22.5度范围内企业
相关性分析是一种研究变量之间关系的统计方法,它可以帮助我们理解数据之间的关系,但并不直接表明因果关系。以下是对相关性分析的优化排版介绍:
2.4 相关性分析
核心概念
相关系类型
- 正相关:一个变量增加时,另一个变量也增加(如身高和体重)。
- 负相关:一个变量增加时,另一个变量减少(如冰淇淋销量与气温)。
- 无相关:两个变量之间没有明显的关联。
相关系强度
方法
- Pearson相关系数:适用于连续变量,假设数据近似正态分布。
- Spearman秩相关:适用于连续或分类变量,关注排序关系。
- Kendall相关:非参数方法,适用于小样本量数据。
- 偏相关:控制其他变量影响,分析两个变量间的净相关。
应用
- 气象影响分析:研究气象因素对其他变量的影响。
分析过程
- 数据收集:确保数据质量与代表性。
- 预处理:处理缺失值和异常值。
- 选择模型:根据数据类型选择合适的相关系数。
- 计算:使用统计软件执行分析。
- 解读:通过图表和r值来理解变量之间的关系。
企业站点溯源相关性分析
- 对企业和企业站点进行相关性分析,推导最近26小时的数据。
- 进行连续24小时的相关性分析,以识别潜在的污染源。
2.4集成AI精准溯源
后台代码算法实现
try {
Map<String, Object> kv = new HashMap<>();
kv.put("labelMap", new HashMap<>());
Map<String, String> headerMap = new HashMap<>();
if(authorization==null)
authorization="eyJhbGciOiJIUzUxMiJ9.eyJ1c2VyX2lkIjoxLCJ1c2VyX2tleSI6IjlkNGZjN2VjLWRkMDEtNDE1MC1iMjRjLTZlMDFhM2EzOWMzYSIsInVzZXJuYW1lIjoiYWRtaW4ifQ.Yoxhd_UCCMiBPHHsFaFAZp2q0kQZ7guXR6oTA4wz3CNEYKIOZ1U-IOE2pxDzEzVG2N-CWI8S4arj3ffNXF5V8g";
headerMap.put("Authorization", authorization);
String[] confs= FileUtils.ReadTxt("peConfig.txt").split(";");
JSONArray datalist = null;
String url = confs[0] + "/stationExceed/changingTrends?contaminant=" + factor + "&end=" + end + "&start=" + start + "&stationIds=" + id;
JSONObject obj = JSON.parseObject(HttpUtils.get(url,kv, headerMap));
logger.warn("请求的地址为:"+url+"返回的数据为"+obj);
datalist = (JSONArray)((JSONObject)((JSONArray)(((JSONObject)obj.get("data")).get("series"))).get(0)).get("values");
double[] x = new double[datalist.size()-2];
for (int i = datalist.size()-1,j=0; i > 1; i--,j++) {
x[j] = TransferDouble(datalist.get(i));
}
String entIds = "";
JSONArray datalist1 = null;
String url1 = confs[0] + "/station/list?stationTypeDictIds="+stationTypeDictIds;
JSONObject obj1 = JSON.parseObject(HttpUtils.get(url1,kv, headerMap));
// logger.warn("请求的地址为:"+url1+"返回的数据为"+obj1);
datalist1 = (JSONArray)obj1.get("data");
JSONArray eArr = new JSONArray();
String thetas = "";
if(windSpeed>=1.5){
for(int i = 0; i < datalist1.size(); i++){
double distancel=InterpolationUtils.GetDistance(lon,lat,TransferDouble(((com.alibaba.fastjson.JSONObject)datalist1.get(i)).get("lon")),TransferDouble(((com.alibaba.fastjson.JSONObject)datalist1.get(i)).get("lat")));
if(((com.alibaba.fastjson.JSONObject)datalist1.get(i)).get("id").equals(id)||distancel>100000){
continue;
}
double dgr=InterpolationUtils.getDegrees(lon,lat,TransferDouble(((com.alibaba.fastjson.JSONObject)datalist1.get(i)).get("lon")),TransferDouble(((com.alibaba.fastjson.JSONObject)datalist1.get(i)).get("lat")));
if(dgr <0 ){
dgr += 360.0;
}
if(wd>=11.25&wd<=349.75){
if(Math.abs(dgr-wd)<=11.25){
eArr.add(datalist1.get(i));
entIds = entIds + ((JSONObject)datalist1.get(i)).get("id").toString() + ",";
thetas=thetas+String.valueOf(Math.abs(dgr-wd))+",";
}
}else {
if(dgr<11.25){
dgr += 360.0;
}
if(wd<11.25){
wd += 360.0;
}
if(Math.abs(dgr-wd)<=11.25){
eArr.add(datalist1.get(i));
entIds = entIds + ((JSONObject)datalist1.get(i)).get("id").toString() + ",";
thetas=thetas+String.valueOf(Math.abs(dgr-wd))+",";
}
}
if(eArr.size()==5){
break;
}
}
int ecount = eArr.size()+5;
for(int i = 0; i < datalist1.size(); i++){
double distancel=InterpolationUtils.GetDistance(lon,lat,TransferDouble(((com.alibaba.fastjson.JSONObject)datalist1.get(i)).get("lon")),TransferDouble(((com.alibaba.fastjson.JSONObject)datalist1.get(i)).get("lat")));
if(((com.alibaba.fastjson.JSONObject)datalist1.get(i)).get("id").equals(id)||distancel>100000){
continue;
}
double dgr=InterpolationUtils.getDegrees(lon,lat,TransferDouble(((com.alibaba.fastjson.JSONObject)datalist1.get(i)).get("lon")),TransferDouble(((com.alibaba.fastjson.JSONObject)datalist1.get(i)).get("lat")));
if(dgr <0 ){
dgr += 360.0;
}
double wd1=wd;
if(wd>180){
wd1=wd-180;
}else {
wd1=wd+180;
}
if(wd1>=11.25&wd1<=349.75){
if(Math.abs(dgr-wd1)<=11.25){
eArr.add(datalist1.get(i));
entIds = entIds + ((JSONObject)datalist1.get(i)).get("id").toString() + ",";
thetas=thetas+String.valueOf(Math.abs(dgr-wd))+",";
}
}else {
if(dgr<11.25){
dgr += 360.0;
}
if(wd1<11.25){
wd1 += 360.0;
}
if(Math.abs(dgr-wd1)<=11.25){
eArr.add(datalist1.get(i));
entIds = entIds + ((JSONObject)datalist1.get(i)).get("id").toString() + ",";
thetas=thetas+String.valueOf(Math.abs(dgr-wd1))+",";
}
}
if(eArr.size()==ecount){
break;
}
}
}else {
for(int i = 0; i < datalist1.size(); i++){
if(((com.alibaba.fastjson.JSONObject)datalist1.get(i)).get("id").equals(id)){
continue;
}
double dgr=InterpolationUtils.getDegrees(lon,lat,TransferDouble(((com.alibaba.fastjson.JSONObject)datalist1.get(i)).get("lon")),TransferDouble(((com.alibaba.fastjson.JSONObject)datalist1.get(i)).get("lat")));
double ds=InterpolationUtils.GetDistance(lon,lat,TransferDouble(((com.alibaba.fastjson.JSONObject)datalist1.get(i)).get("lon")),TransferDouble(((com.alibaba.fastjson.JSONObject)datalist1.get(i)).get("lat")));
if(ds <25000 ){
eArr.add(datalist1.get(i));
entIds = entIds + ((JSONObject)datalist1.get(i)).get("id").toString() + ",";
thetas=thetas+String.valueOf(Math.abs(dgr-wd))+",";
}
if(eArr.size()==10){
break;
}
}
}
for(int i = 0; i < datalist1.size(); i++){
if(((com.alibaba.fastjson.JSONObject)datalist1.get(i)).get("id").equals(id)){
eArr.add(datalist1.get(i));
entIds = entIds + ((JSONObject)datalist1.get(i)).get("id").toString() + ",";
thetas=thetas+"0,";
break;
}
}
if(entIds.equals("")){
return "";
}
JSONArray datalist2 = null;
String url2 = confs[0] + "/stationExceed/changingTrends?contaminant=" + factor + "&end=" + end + "&stationIds=" + entIds.substring(0, entIds.length() - 2) + "&start=" + start;
JSONObject obj2 = JSON.parseObject(HttpUtils.get(url2,kv, headerMap));
logger.warn("请求的地址为:"+url2+"返回的数据为"+obj2);
datalist2 = (JSONArray)((JSONObject)obj2.get("data")).get("series");
double[] pearsonCorrelations=new double[datalist2.size()];
double[] emissionCorrelations=new double[datalist2.size()];
for(int i=0;i<datalist2.size();i++){
JSONArray datalistL=(JSONArray)(((JSONObject)datalist2.get(i)).get("values"));
double[] y1 = new double[datalistL.size()-2];
double[] y2 = new double[datalistL.size()-2];
double[] y3 = new double[datalistL.size()-2];
for (int k = datalist.size()-1,j=0; k > 1; k--,j++) {
y1[j] = TransferDouble(datalistL.get(k));
}
for (int k = datalist.size()-2,j=0; k > 0; k--,j++) {
y2[j] = TransferDouble(datalistL.get(k));
}
for (int k = datalist.size()-3,j=0; k > -1; k--,j++) {
y3[j] = TransferDouble(datalistL.get(k));
}
double correlation1 = StatisticsUtil.correlation(x, y1, PEARSON_ID);
double correlation2 = StatisticsUtil.correlation(x, y2, PEARSON_ID);
double correlation3 = StatisticsUtil.correlation(x, y3, PEARSON_ID);
if(Double.isNaN(correlation1)){
correlation1 = 0;
}
if(Double.isNaN(correlation2)){
correlation2 = 0;
}
if(Double.isNaN(correlation3)){
correlation3 = 0;
}
pearsonCorrelations[i]=correlation1;
double q = y1[0];
if(correlation2>pearsonCorrelations[i]){
pearsonCorrelations[i]=correlation2;
q = y2[0];
}
if(correlation3>pearsonCorrelations[i]){
pearsonCorrelations[i]=correlation3;
q = y3[0];
}
double lz=Math.sqrt(Math.pow(((JSONObject)eArr.get(i)).getDouble("lon")-lon,2)+Math.pow(((JSONObject)eArr.get(i)).getDouble("lat")-lat,2));
double lX=lz*Math.cos(TransferDouble(thetas.split(",")[i])/180);
double lY=lz*Math.sin(TransferDouble(thetas.split(",")[i])/180);
emissionCorrelations[i]=InterpolationUtils.interpolation_GaussPlumeP(lX, lY,1, windSpeed, q, 0,"A");
((JSONObject) eArr.get(i)).put("emissionCorrelation",emissionCorrelations[i]*1000);
((JSONObject) eArr.get(i)).put("pearsonCorrelation",pearsonCorrelations[i]);
((JSONObject) eArr.get(i)).put("lineGeoField","[["+((JSONObject)eArr.get(i)).getString("lon")+","+((JSONObject)eArr.get(i)).getString("lat")+"],["+lon+","+lat+"]]");
}
return eArr.toJSONString();
}catch (Exception e){
return "";
}
如果对您有所帮助,请点赞打赏支持!
技术合作交流qq:2945853209
网址:https://threelab.cn/