大学物理 质点运动学

第二章 质点动力学

牛顿运动定律

  • 牛顿三大定律:
    • 惯性定律: F ⃗ = 0 , v ⃗ = \vec F=0,\vec v= F =0,v =常量
    • F ⃗ = d P ⃗ d t = d ( m v ⃗ ) d t = m d v ⃗ d t + v ⃗ d m d t \displaystyle\vec F={d\vec P\over dt}={d(m\vec v)\over dt}=m{d\vec v\over dt}+\vec v{dm\over dt} F =dtdP =dtd(mv )=mdtdv +v dtdm
      v → c v\rightarrow c vc时,m为变量
      v < < c v<<c v<<c或m为常量时: F ⃗ = m a ⃗ \vec F=m\vec a F =ma
      • 注:牛顿运动定律适用于惯性系,牛二只适用于质点
      • 惯性质量m: F ⃗ = m a ⃗ \vec F=m\vec a F =ma
      • 引力质量m: F ⃗ = G M m r 3 r ⃗ \displaystyle\vec F={GMm\over r^3}\vec r F =r3GMmr
      • 对质点系:
  • 三个定理:动量定理、角动量定理、动能定理
  • 三个守恒定律:能量、角动量、机械能
  • 惯性力
    • 引入一个假想的力 f ⃗ i \vec f_i f i F ⃗ − m a ⃗ 0 = m a ⃗ ′ \vec F-m\vec a_0=m\vec a^{'} F ma 0=ma (加速平动参考系中)
    • 非惯性系中的牛顿第二定律: F ⃗ ′ = m a ⃗ ′ = F ⃗ 真 实 力 + f ⃗ i \vec F^{'}=m\vec a^{'}=\vec F_{真实力}+\vec f_i F =ma =F +f i
  • 科里奥利力
    • f ⃗ c = 2 m v ⃗ ′ × ω ⃗ \vec f_c=2m\vec v^{'}\times \vec \omega f c=2mv ×ω v ⃗ i \vec v_i v i为物体相对于转动参考系的速度, ω ⃗ \vec \omega ω 为转动参考系相对于惯性系转动的角速度(方向:由南向北)
    • 例子:落体偏东、河流两岸

力的时间累积效应

  • 动量定理 (适用范围:惯性系)
    对单个质点及质点系: F ⃗ d t = d P ⃗ \vec Fdt=d\vec P F dt=dP
    冲量: I ⃗ = ∫ t 1 t 2 F ⃗ d t = Δ P ⃗ \displaystyle\vec I=\int_{t_1}^{t_2}\vec Fdt=\Delta\vec P I =t1t2F dt=ΔP
    F ⃗ ˉ = m v ⃗ − m v ⃗ 0 Δ t \displaystyle\bar {\vec F}={m\vec v-m\vec v_0\over \Delta t} F ˉ=Δtmv mv 0
  • 动量守恒定律: F ⃗ = 0 ⟶ P ⃗ t = P ⃗ 0 \vec F=0\quad \longrightarrow \vec P_t=\vec P_0 F =0P t=P 0
  • 变质量问题
    • 动量定理与火箭飞行原理:
      密歇尔斯基方程: F ⃗ = d ( m v ⃗ ) d t − v ⃗ ′ d m d t \vec F={d(m\vec v)\over dt}-\vec v^{'}{dm\over dt} F =dtd(mv )v dtdm
  • 角动量定理
    • 质点的角动量(动量矩): L ⃗ = r ⃗ × P ⃗ \vec L =\vec r\times \vec P L =r ×P
    • 力矩: M → = r ⃗ × F ⃗ \overrightarrow{M}=\vec r\times \vec F M =r ×F
    • d L ⃗ d t = d d t ( r ⃗ × P ⃗ ) = d r ⃗ d t × P ⃗ + r ⃗ × d P ⃗ d t = r ⃗ × d P ⃗ d t = r ⃗ × F ⃗ = M ⃗ \displaystyle{d\vec L\over dt}={d\over dt}(\vec r\times \vec P)={d\vec r\over dt}\times \vec P+\vec r\times {d\vec P\over dt}=\vec r\times {d\vec P\over dt}=\vec r\times \vec F=\vec M dtdL =dtd(r ×P )=dtdr ×P +r ×dtdP =r ×dtdP =r ×F =M
      ∴ M ⃗ d t = d L ⃗ \therefore \vec Mdt=d\vec L M dt=dL
    • 注:适用于惯性系
  • 质点的角动量守恒定律
    M ⃗ = 0 \vec M=0 M =0,则 L ⃗ t = L ⃗ 0 \vec L_t=\vec L_0 L t=L 0

力的空间累积效应

  • 动能定理
    • 功:
      • 恒力: A = F ⃗ ⋅ Δ r ⃗ A=\vec F\cdot \Delta \vec r A=F Δr
      • 变力: d A = F ⃗ ⋅ d r ⃗ A a b = ∫ a b F ⃗ ⋅ d r ⃗ dA=\vec F\cdot d\vec r\qquad A_{ab}=\int_a^b\vec F\cdot d\vec r dA=F dr Aab=abF dr
    • 单个质点的动能定理: ∫ a b F ⃗ ⋅ d r ⃗ = 1 2 m v b 2 − 1 2 m v a 2 \displaystyle\int_a^b\vec F\cdot d\vec r={1\over 2}mv_b^2-{1\over 2}mv_a^2 abF dr =21mvb221mva2
    • 质点系的动能定理: A 外 + A 内 = E k b − E k a = Δ E k A_{外}+A_{内}=E_{kb}-E_{ka}=\Delta E_k A+A=EkbEka=ΔEk
  • 势能:
    • 弹力:
      A a b = ∫ x a x b F d x = − ( 1 2 k x b 2 − 1 2 k x a 2 ) A_{ab}=\displaystyle\int_{x_a}^{x_b}Fdx=-({1\over 2}kx_b^2-{1\over 2}kx_a^2) Aab=xaxbFdx=(21kxb221kxa2)
      E p = 1 2 k x 2 E_p=\displaystyle{1\over 2}kx^2 Ep=21kx2
    • 重力:
      A a b = − ( m g y b − m g y a ) A_{ab}=-(mgy_b-mgy_a) Aab=(mgybmgya)
      E p = m g y E_p=mgy Ep=mgy
    • 万有引力:
      A a b = − [ ( − G M m r b ) − ( − G M m r a ) ] A_{ab}=-\displaystyle[(-{GMm\over r_b})-(-{GMm\over r_a})] Aab=[(rbGMm)(raGMm)]
      E p = − G M m r E_p=-\displaystyle{GMm\over r} Ep=rGMm
    • 功能原理: E = E k + E p E=E_k+E_p E=Ek+Ep
  • 机械能守恒定律:
    只有保守内力做功时,系统的总机械能保持不变
  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值