【组合数学:四】生成函数 | 指数生成函数 | 线性齐次递推关系(上)

【组合数学:四】生成函数 | 指数生成函数 | 线性齐次递推关系(上)

斐波那契数

生成函数

  • 一方面,我们可以把生成函数看成是代数对象,其形式上的处理使得人们可以通过代数手段计算一个问题的可能性的数目;另一方面,生成函数是无限可微分函数的泰勒级数。
    通常我们默认级数是收敛的且只在其形式上操作幂级数。
  • 设:
    h 0 , h 1 , h 2 , ⋯   , h n , ⋯ h_0,h_1,h_2,\cdots,h_n,\cdots h0,h1,h2,,hn,
    是无穷数列。它的生成函数定义为无穷级数
    g ( x ) = ∑ i = 0 ∞ h i x i g(x)=\sum_{i=0}^\infin h_i x^i g(x)=i=0hixi
    每一个有限数列都有一个生成函数(后面的所有项都为 0 0 0),它是一个多项式。
  • 例子:每一项都等于 1 1 1 的无穷数列
    1 , 1 , 1 , ⋯   , 1 , ⋯ 1,1,1,\cdots,1,\cdots 1,1,1,,1,
    的生成函数是
    g ( x ) = ∑ i = 0 ∞ x i = 1 1 − x g(x)=\sum_{i=0}^\infin x^i=\frac{1}{1-x} g(x)=i=0xi=1x1
  • 例子:设 m m m 是正整数。二项式系数
    C m , 0 , C m , 1 , C m , 2 , ⋯   , C m , m C_{m,0}, C_{m,1}, C_{m,2} ,\cdots ,C_{m,m} Cm,0,Cm,1,Cm,2,,Cm,m
    的生成函数是
    g m ( x ) = ∑ i = 0 m C m i x i = ( 1 + x ) m g_m(x)=\sum_{i=0}^m C_m^i x^i = (1+x)^m gm(x)=i=0mCmixi=(1+x)m
  • 例子:设 k k k 是整数,并设数列 h n h_n hn 等于
    e 1 + e 2 + ⋯ + e k = n e_1+e_2+\cdots+e_k=n e1+e2++ek=n
    的非负整数解的个数。
    它的生成函数是
    g ( x ) = ( ∑ e 1 = 0 ∞ x e 1 ) ( ∑ e 2 = 0 ∞ x e 2 ) ⋯ ( ∑ e k = 0 ∞ x e 1 ) = 1 ( 1 − x ) × 1 ( 1 − x ) × ⋯ × 1 ( 1 − x ) = 1 ( 1 − x ) k \begin{aligned} g(x)&=(\sum_{e_1=0}^\infin x^{e_1})(\sum_{e_2=0}^\infin x^{e_2})\cdots(\sum_{e_k=0}^\infin x^{e_1})\\ &=\frac{1}{(1-x)}\times\frac{1}{(1-x)}\times\cdots\times\frac{1}{(1-x)}\\ &=\frac{1}{(1-x)^k} \end{aligned} g(x)=(e1=0xe1)(e2=0xe2)(ek=0xe1)=(1x)1×(1x)1××(1x)1=(1x)k1
    根据之前我们可知
    g ( x ) = ∑ n = 0 ∞ C n + k − 1 n x n g(x)=\sum_{n=0}^\infin C_{n+k-1}^{n} x^n g(x)=n=0Cn+k1nxn
  • 例子:求装有苹果、香蕉、橘子和梨子的果篮的数量 h n h_n hn,其中在每个果篮中苹果的个数是偶数,香蕉数是 5 5 5 的倍数,橘子数最多是 4 4 4 个,梨子要么一个要么没有
    解:直接写出生成函数
    g ( x ) = ( 1 + x 2 + x 4 + ⋯   ) ( 1 + x 5 + x 10 + ⋯   ) ( 1 + x + x 2 + x 3 + x 4 ) ( 1 + x ) = 1 1 − x 2 1 1 − x 5 1 − x 5 1 − x ( 1 + x ) = 1 ( 1 − x ) 2 = ∑ n = 0 ∞ C n + 1 n x n \begin{aligned} g(x)&=(1+x^2+x^4+\cdots)(1+x^5+x^{10}+\cdots)(1+x+x^2+x^3+x^4)(1+x)\\ &=\frac{1}{1-x^2}\frac{1}{1-x^5}\frac{1-x^5}{1-x}(1+x)\\ &=\frac{1}{(1-x)^2}\\ &=\sum_{n=0}^\infin C_{n+1}^n x^n \end{aligned} g(x)=(1+x2+x4+)(1+x5+x10+)(1+x+x2+x3+x4)(1+x)=1x211x511x1x5(1+x)=(1x)21=n=0Cn+1nxn
    于是我们可以看到 h n = n + 1 h_n=n+1 hn=n+1

指数生成函数

  • 之前的生成函数特别适合涉及二项式系数的数列;然而对于某些计数排序的项数列,更有效的方法是考虑关于下面单项式集合的生成函数
    { 1 , x , x 2 2 ! , ⋯   , x n n ! , ⋯   } \{1,x,\frac{x^2}{2!},\cdots,\frac{x^n}{n!},\cdots\} {1,x,2!x2,,n!xn,}
    这些单项式出现在泰勒级数
    e x = ∑ n = 0 ∞ x n n ! e^x=\sum_{n=0}^\infin \frac{x^n}{n!} ex=n=0n!xn
    中。数列 h 0 , h 1 , ⋯   , h n , ⋯ h_0,h_1,\cdots,h_n,\cdots h0,h1,,hn, 的指数生成函数定义为
    g ( e ) ( x ) = ∑ n = 0 h n x n n ! g^{(e)}(x)=\sum_{n=0}h_n\frac{x^n}{n!} g(e)(x)=n=0hnn!xn
    后文简记为 g ( x ) g(x) g(x)
  • 例子:设 n n n 是正整数。确定下面数列的指数生成函数
    P ( n , 0 ) , P ( n , 1 ) , ⋯   , P ( n , n ) P(n,0),P(n,1),\cdots,P(n,n) P(n,0),P(n,1),,P(n,n)
    解:直接带入
    g ( x ) = ∑ i = 0 n P ( n , i ) x i i ! = ∑ i = 0 n C n i x i = ( 1 + x ) n g(x)=\sum_{i=0}^n P(n,i) \frac{x^i}{i!}=\sum_{i=0}^n C_n^i x^i =(1+x)^n g(x)=i=0nP(n,i)i!xi=i=0nCnixi=(1+x)n
  • 例子:数列 { 1 , 1 , 1 , ⋯   , 1 , ⋯   } \{1,1,1,\cdots,1,\cdots\} {1,1,1,,1,} 的指数生成函数是 g ( x ) = e x g(x)=e^x g(x)=ex
    更一般的,数列 { a 0 , a 1 , a 2 , ⋯   , a n , ⋯   } \{a^0,a^1,a^2,\cdots,a^n,\cdots\} {a0,a1,a2,,an,} 的指数生成函数是 g ( x ) = e a x g(x)=e^{ax} g(x)=eax
  • 定理:设 S S S 是多重集合 { n 1 ⋅ a 1 , n 2 ⋅ a 2 , ⋯   , n k ⋅ a k } \{n_1\cdot a_1,n_2\cdot a_2,\cdots,n_k\cdot a_k\} {n1a1,n2a2,,nkak} ,其中 n i n_i ni 是非负整数。设 h n h_n hn S S S n n n 排列数。那么数列 h 0 , h 1 , ⋯   , h n , ⋯ h_0,h_1,\cdots,h_n,\cdots h0,h1,,hn, 的指数生成函数 g ( x ) g(x) g(x) 为:
    g ( x ) = ∏ f n i ( x ) g(x)=\prod f_{n_i}(x) g(x)=fni(x)
    其中, ∀ i ∈ [ 1 , k ] \forall i\in[1,k] i[1,k],有:
    f n i ( x ) = 1 + x + x 2 2 ! + ⋯ + x n i n i ! f_{n_i}(x)=1+x+\frac{x^2}{2!}+\cdots+\frac{x^{n_i}}{n_i!} fni(x)=1+x+2!x2++ni!xni
    证明略。
    注意到当 n i = ∞ n_i=\infin ni= 时,上面的定理仍然成立。
  • 例子:用红、白、蓝三种颜色给 1 × n 1\times n 1×n 的棋盘着色,要求红色格子是偶数个的方案数。
    解:直接写出相应的指数生成函数:
    g ( x ) = ( 1 + x 2 2 ! + x 4 4 ! + ⋯   ) ( 1 + x 1 1 ! + x 2 2 ! + ⋯   ) ( 1 + x 1 1 ! + x 2 2 ! + ⋯   ) = e x + e − x 2 e x e x = e 3 x + e x 2 = 1 2 ( ∑ 3 i x i i ! ) ( ∑ x i i ! ) = 1 2 ∑ ( 3 i + 1 ) x i i ! \begin{aligned} g(x)&=(1+\frac{x^2}{2!}+\frac{x^4}{4!}+\cdots)(1+\frac{x^1}{1!}+\frac{x^2}{2!}+\cdots)(1+\frac{x^1}{1!}+\frac{x^2}{2!}+\cdots)\\ &=\frac{e^x+e^{-x}}{2} e^x e^x\\ &=\frac{e^{3x}+e^x}{2}\\ &=\frac{1}{2}(\sum 3^i\frac{x^i}{i!})(\sum \frac{x^i}{i!})\\ &=\frac{1}{2}\sum (3^i+1)\frac{x^i}{i!} \end{aligned} g(x)=(1+2!x2+4!x4+)(1+1!x1+2!x2+)(1+1!x1+2!x2+)=2ex+exexex=2e3x+ex=21(3ii!xi)(i!xi)=21(3i+1)i!xi
    因此,我们能得到 h n = 1 2 ( 3 n + 1 ) h_n=\frac{1}{2}(3^n+1) hn=21(3n+1)
  • 例子:一个 n n n 位数,每个数字都是奇数且数字 1 1 1 和数字 3 3 3 出现偶数次的个数 h n h_n hn
    解:直接写出相应的指数生成函数:
    g ( x ) = ( 1 + x 2 2 ! + x 4 4 ! + ⋯   ) 2 ( 1 + x + x 2 2 ! + ⋯   ) 3 = ( e x + e − x 2 ) 2 ⋅ e 3 x = 1 4 ( e 5 x + 2 e 3 x + e x ) = 1 4 ( ∑ ( 5 i + 2 ⋅ 3 i + 1 ) x i i ! ) \begin{aligned} g(x)&=(1+\frac{x^2}{2!}+\frac{x^4}{4!}+\cdots)^2(1+x+\frac{x^2}{2!}+\cdots)^3\\ &=(\frac{e^x+e^{-x}}{2})^2\cdot e^{3x}\\ &=\frac{1}{4}(e^{5x}+2e^{3x}+e^x)\\ &=\frac{1}{4}(\sum (5^i+2\cdot3^i+1)\frac{x^i}{i!}) \end{aligned} g(x)=(1+2!x2+4!x4+)2(1+x+2!x2+)3=(2ex+ex)2e3x=41(e5x+2e3x+ex)=41((5i+23i+1)i!xi)
    因此,我们得到 h n = 1 4 ( 5 n + 2 ⋅ 3 n + 1 ) h_n=\frac{1}{4}(5^n+2\cdot3^n+1) hn=41(5n+23n+1)
  • 例子:用红、白、蓝三色给 1 × n 1\times n 1×n 的棋盘着色,其中红色格子有偶数个,蓝色格子至少一个的方案数
    解:直接写指数生成函数:
    g ( x ) = ( 1 + x 2 2 ! + x 4 4 ! + ⋯   ) ( 1 + x + x 2 2 ! + ⋯   ) ( x + x 2 2 ! + ⋯   ) = e x + e − x 2 e x × ( e x − 1 ) = e 3 x − e 2 x + e x − 1 2 = − 1 2 + ∑ 3 i − 2 i + 1 2 x i i ! \begin{aligned} g(x)&=(1+\frac{x^2}{2!}+\frac{x^4}{4!}+\cdots)(1+x+\frac{x^2}{2!}+\cdots)(x+\frac{x^2}{2!}+\cdots)\\ &=\frac{e^x+e^{-x}}{2} e^x \times(e^x-1)\\ &= \frac{e^{3x}-e^{2x}+e^x-1}{2}\\ &=-\frac{1}{2}+\sum \frac{3^i-2^i+1}{2} \frac{x^i}{i!} \end{aligned} g(x)=(1+2!x2+4!x4+)(1+x+2!x2+)(x+2!x2+)=2ex+exex×(ex1)=2e3xe2x+ex1=21+23i2i+1i!xi
    注意到, h 0 = − 1 2 + 1 2 = 0 h_0=-\frac{1}{2}+\frac{1}{2}=0 h0=21+21=0
    h n = 3 n − 2 n + 1 2 , n > 0 h_n=\frac{3^n-2^n+1}{2},n>0 hn=23n2n+1,n>0

求解线性齐次递推关系 (上)

  • h 0 , h 1 , ⋯   , h n , ⋯ h_0,h_1,\cdots,h_n,\cdots h0,h1,,hn, 是一个数列。称这个数列满足 k k k 阶线性递推关系是指存在量 a 1 , a 2 , ⋯   , a k ( a k ≠ 0 ) a_1,a_2,\cdots,a_k(a_k\ne 0) a1,a2,,ak(ak=0) 和量 b n b_n bn ,使得
    h n = a 1 h n − 1 + a 2 h n − 2 + ⋯ + a k h n − k + b n ( n ≥ k ) h_n=a_1h_{n-1}+a_2h_{n-2}+\cdots+a_kh_{n-k}+b_n (n\ge k) hn=a1hn1+a2hn2++akhnk+bn(nk)
    其中, a i , b i a_i,b_i aibi 或是常数,或是依赖于 n n n 的量。
  • 我们称线性递推关系是 齐次的 ( h o m o g e n e o u s homogeneous homogeneous) ,如果 b n b_n bn 是常数 0 0 0
    称它是 常系数 ( c o n s t a n t   c o e f f i c i e n t constant\ coefficient constant coefficient) 的,如果量 a 1 , a 2 , ⋯   , a k a_1,a_2,\cdots,a_k a1,a2,,ak 是常数。
    我们后文讨论的是常系数线性齐次递推关系,即形如
    h n − a 1 h n − 1 − a 2 h n − 2 − ⋯ − a k h n − k = 0 ( n ≥ k ) h_n-a_1h_{n-1}-a_2h_{n-2}-\cdots-a_kh_{n-k}=0\quad(n\ge k) hna1hn1a2hn2akhnk=0(nk)
    的多项式。
  • 定理:如果多项式方程有 k k k 个不同的根 q 1 , q 2 , ⋯   , q k q_1,q_2,\cdots,q_k q1,q2,,qk,则
    h n = ∑ i = 1 k c i q i n h_n=\sum_{i=1}^k c_iq_i^n hn=i=1kciqin
    无论给定什么样的初始值 h 0 , h 1 , ⋯   , h k − 1 h_0,h_1,\cdots,h_{k-1} h0,h1,,hk1,都存在常数 c 1 , c 2 , ⋯   , c k c_1,c_2,\cdots,c_k c1,c2,,ck,使得上述式子满足递推关系和初始条件的唯一数列。
  • 例子:初始值 h 0 = 1 , h 1 = 2 , h 2 = 0 h_0=1,h_1=2,h_2=0 h0=1,h1=2,h2=0,求解下面的递推关系:
    h n = 2 h n − 1 + h n − 2 − 2 h n − 3 ( n ≥ 3 ) h_n=2h_{n-1}+h_{n-2}-2h_{n-3}\quad(n\ge 3) hn=2hn1+hn22hn3(n3)
    解:这个递推关系的特征方程是:
    x 3 − 2 x 2 − x + 2 = 0 x^3-2x^2-x+2=0 x32x2x+2=0
    它的三个根是 1 , − 1 , 2 1,-1,2 1,1,2。根据定理,
    h n = c 1 1 n + c 2 ( − 1 ) n + c 3 2 n h_n=c_11^n+c_2(-1)^n+c_32^n hn=c11n+c2(1)n+c32n
    是通解。现在,我们要求常数 c 1 , c 2 , c 3 c_1,c_2,c_3 c1,c2,c3,使得他们满足 h 0 , h 1 , h 2 h_0,h_1,h_2 h0,h1,h2 是成立的
    利用消元法可以解出解是: c 1 = 2 , c 2 = − 2 3 , c 3 = − 1 3 c_1=2,c_2=-\frac{2}{3},c_3=-\frac{1}{3} c1=2,c2=32,c3=31。因此,
    h n = 2 − 2 3 ( − 1 ) n − 1 3 2 n h_n=2-\frac{2}{3}(-1)^n-\frac{1}{3}2^n hn=232(1)n312n
  • 补充的内容:
    1 ( 1 − r x ) n = ∑ k = 0 ∞ C n + k − 1 k r k x k \frac{1}{(1-rx)^n}=\sum_{k=0}^\infin C_{n+k-1}^k r^kx^k (1rx)n1=k=0Cn+k1krkxk
    例子:确定下面数列的生成函数
    0 , 1 , 4 , ⋯   , n 2 , ⋯ 0,1,4,\cdots,n^2,\cdots 0,1,4,,n2,
    解:带入上述例子, r = 1 , n = 2 r=1,n=2 r=1,n=2,得到:
    1 ( 1 − x ) 2 = 1 + 2 x + 3 x 2 + ⋯ + n x n − 1 + ⋯ x ( 1 − x ) 2 = x + 2 x 2 + 3 x 3 + ⋯ + n x n + ⋯ 1 + x ( 1 − x ) 3 = 1 + 2 2 x + 3 2 x 2 + ⋯ + n 2 x n − 1 + ⋯ x ( 1 + x ) ( 1 − x ) 3 = x + 2 2 x 2 + 3 2 x 3 + ⋯ + n 2 x n + ⋯ \begin{aligned} \frac{1}{(1-x)^2}&=1+2x+3x^2+\cdots+nx^{n-1}+\cdots\\ \frac{x}{(1-x)^2}&=x+2x^2+3x^3+\cdots+nx^n+\cdots\\ \frac{1+x}{(1-x)^3}&=1+2^2x+3^2x^2+\cdots+n^2x^{n-1}+\cdots\\ \frac{x(1+x)}{(1-x)^3}&=x+2^2x^2+3^2x^3+\cdots+n^2x^n+\cdots\\ \end{aligned} (1x)21(1x)2x(1x)31+x(1x)3x(1+x)=1+2x+3x2++nxn1+=x+2x2+3x3++nxn+=1+22x+32x2++n2xn1+=x+22x2+32x3++n2xn+
  • 例子:求解下面的递推关系
    h n = 5 h n − 1 − 6 h n − 2 h_n=5h_{n-1}-6h_{n-2} hn=5hn16hn2
    初始值 h 0 = 1 , h 1 = 2 h_0=1,h_1=2 h0=1,h1=2
    我们把递推关系写成下面这样的形式:
    h n − 5 h n − 1 + 6 h n − 2 = 0 ( n ≥ 2 ) h_n-5h_{n-1}+6h_{n-2}=0\quad(n\ge 2) hn5hn1+6hn2=0(n2)
    g ( x ) = h 0 + h 1 x + h 2 x 2 + ⋯ + h n x n + ⋯ g(x)=h_0+h_1x+h_2x^2+\cdots+h_nx^n+\cdots g(x)=h0+h1x+h2x2++hnxn+ 是数列 h 0 , h 1 , h 2 , ⋯   , h n , ⋯ h_0,h_1,h_2,\cdots,h_n,\cdots h0,h1,h2,,hn, 的生成函数。
    则有下面的一些方程,参照原来的递推关系,分别用 − 5 x , 6 x 2 -5x,6x^2 5x,6x2 作为乘数乘以 g ( x ) g(x) g(x) 得到:
    g ( x ) = h 0 + h 1 x + h 2 x 2 + ⋯ + h n x n + ⋯ − 5 x g ( x ) = − 5 h 0 x − 5 g 1 x − ⋯ − 5 h n − 1 x n − ⋯ 6 x 2 g ( x ) = 6 h 0 x 2 + ⋯ + 6 h n − 2 x n + ⋯ \begin{aligned} g(x)&=h_0+h_1x+h_2x^2+\cdots+h_nx^n+\cdots\\ -5xg(x)&=-5h_0x-5g_1x-\cdots-5h_{n-1}x^n-\cdots\\ 6x^2g(x)&=6h_0x^2+\cdots+6h_{n-2}x^n+\cdots\\ \end{aligned} g(x)5xg(x)6x2g(x)=h0+h1x+h2x2++hnxn+=5h0x5g1x5hn1xn=6h0x2++6hn2xn+
    把上面三个方程加起来,我们得到
    ( 1 − 5 x + 6 x 2 ) g ( x ) = h 0 + ( h 1 − 5 h 0 ) x + ( h 2 − 5 h 1 + 6 h 0 ) x 2 + ⋯ + ( h n − 5 h n − 1 + 6 h n − 2 ) x n + ⋯ (1-5x+6x^2)g(x)=h_0+(h_1-5h_0)x+(h_2-5h_1+6h_0)x^2+\cdots+(h_n-5h_{n-1}+6h_{n-2})x^n+\cdots (15x+6x2)g(x)=h0+(h15h0)x+(h25h1+6h0)x2++(hn5hn1+6hn2)xn+
    因为 h n − 5 h n − 1 + 6 h n − 2 = 0 ( n ≥ 2 ) h_n-5h_{n-1}+6h_{n-2}=0\quad(n\ge 2) hn5hn1+6hn2=0(n2)
    又因为 h 0 = 1 , h 1 = − 2 h_0=1,h_1=-2 h0=1,h1=2,所以有:
    ( 1 − 5 x + 6 x 2 ) g ( x ) = h 0 + ( h 1 − 5 h 0 ) x = 1 − 7 x (1-5x+6x^2)g(x)=h_0+(h_1-5h_0)x=1-7x (15x+6x2)g(x)=h0+(h15h0)x=17x
    因此:
    g ( x ) = 1 − 7 x 1 − 5 x + 6 x 2 = c 1 1 − 2 x + c 2 1 − 3 x = 5 1 − 2 x − 4 1 − 3 x g(x)=\frac{1-7x}{1-5x+6x^2}=\frac{c_1}{1-2x}+\frac{c_2}{1-3x}=\frac{5}{1-2x}-\frac{4}{1-3x} g(x)=15x+6x217x=12xc1+13xc2=12x513x4
    因此我们又可以得到:
    g ( x ) = ∑ i = 0 ∞ ( 5 ⋅ 2 i − 4 ⋅ 3 i ) x i g(x)=\sum_{i=0}^\infin (5\cdot 2^i-4\cdot3^i)x^i g(x)=i=0(52i43i)xi
    所以得到 h n = 5 ⋅ 2 n − 4 ⋅ 3 n h_n=5\cdot 2^n -4\cdot 3^n hn=52n43n
    不过前提是特征方程的根是互不相同的,定理才成立。
  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
本书是系统阐述组合数学基础、理论、方法和实例的优秀教材,出版近30年来多次改版,被MIT、哥伦比亚大学、UIUC、威斯康星大学等众多国外高校采用,对国内外组合数学教学产生了较大影n向,也是相关学科的主要参考文献之一。 本书侧重于组合数学的概念和思想,包括鸽巢原理、计数技术、排列组合、Polya计数法、二项式系数、容斥原理、生成函数递推关系以及组合结构(匹配、实验设计、图)等,深入浅出地表达了作者对该领域全面和深刻的理解,介绍了历史上源于数学游戏和娱乐的大量实例,其中对Polya计数、Burnside定理等的完美处理使得不熟悉群论的学生也能够读懂。除包含第3版中的内容外,本版又进行了更新,增加了莫比乌斯反演(作为容斥原理的推广)、格路径、Schroder数等内容。此外,各章均包含大量练习题,并在书末给出了参考答案与提示。 目录回到顶部↑ 出版者的话 专家指导委员会 译者序 前言 第1章 什么是组合数学 1.1 例:棋盘的完美覆盖 1.2 例:切割立方体 1.3 例:幻方 1.4 例:色问题 1.5 例:36军官问题 1.6 例:最短路径问题 1.7 例:nim取子游戏 1.8 练习题 第2章 鸽巢原理 2.1 鸽巢原理:简单形式 2.2 鸽巢原理:加强形式 2.3 ramsey定理 2.4 练习题 第3章 排列与组合 3.1 个基本的计数原理 .3.2 集合的排列 3.3 集合的组合 3.4 多重集的排列 3.5 多重集的组合 3.6 练习题 第4章 生成排列和组合 4.1 生成排列 4.2 排列中的逆序 4.3 生成组合 4.4 生成卜组合 4.5 偏序和等价关系 4.6 练习题 第5章 二项式系数 5.1 pascal公式 5.2 二项式定理 5.3 一些恒等式 5.4 二项式系数的单峰性 5.5 多项式定理 5.6 牛顿二项式定理 5.7 再论偏序集 5.8 练习题 第6章 容斥原理及应用 6.1 容斥原理 6.2 具有重复的组合 6.3 错位排列 6.4 带有禁止位置的排列 6.5 另外的禁排位置问题 6.6 莫比乌斯反演 6.7 练习题 第7章 递推关系生成函数 7.1 一些数列 7.2 线性齐次递推关系 7.3 非齐次递推关系 7.4 生成函数 7.5 递归和生成函数 7.6 一个几何的例子 7.7 指数生成函数 7.8 练习题 第8章 特殊计数序列 8.1 catalan数 8.2 差分序列和stirling数 8.3 分拆数 8.4 一个几何问题 8.5 格路径和schroder数 8.6 练习题 第9章 二分图中的匹配 9.1 一般问题表述 9.2 匹配 9.3 互异代表系统 9.4 稳定婚姻 9.5 练习题 第10章 组合设计 10.1 模运算 10.2 区组设计 10.3 steiner三元系统 10.4 拉丁方 10.5 练习题 第11章 图论导引 11.1 基本性质 11.2 欧拉迹 11.3 hamilton路径和hamilton圈 11.4 二分多重图 11.5 树 11.6 shannon开关游戏 11.7 再论树 11.8 练习题 第12章 有向图及网络 12.1 有向图 12.2 网络 12.3 练习题 第13章 再论图 13.1 色数 13.2 平面和平面图 13.3 五色定理 13.4 独立数和团数 13.5 连通性 13.6 练习题 第14章 polya计数法 14.1 置换群与对称群 14.2 burnside定理 14.3 polya计数公式 14.4 练习题 练题的答案与提示 参考文献 索引

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值