第五章 微分方程模型

第五章 微分方程模型

微分方程:包含连续变化的自变量、未知函数及其变化率的方程式

动态过程的变化规律一般用微分方程的动态模型建立,主要目的是研究某种意义下稳定状态的特征

1.人口增长 logistic模型

理想状况下,不受资源和环境的限制,此时增长率r为常数,微分方程的满足条件
d t d t = r x , x ( 0 ) = x 0 {dt\over dt}=rx,x(0)=x_0 dtdt=rx,x(0)=x0
考虑资源和环境的限制等因素的阻滞作用,logistics模型

增长率r是随x变化的函数r(x)=a+bx,引入两个参数:

  1. 内禀增长率r r是理论上x=0时的增长率,r(0)=r。
  2. 人口容量xm xm是资源和环境所能容纳的最大人口数量

由参数定义得到
r ( x ) = r ( 1 − x x m ) r(x)=r(1-{x\over x_m} ) r(x)=r(1xmx)
得到logistics模型
d x d t = r x ( 1 − x x m ) , x ( 0 ) = x 0 {dx\over dt}=rx(1-{x\over x_m}),x(0)=x_0 dtdx=rx(1xmx),x(0)=x0

2.捕鱼业的可持续

产量模型

设t时刻渔场中的鱼量为x(t),无捕捞条件下x(t)服从logistic模型
d x d t = f ( x ) = r x ( 1 − x N ) {dx\over dt}=f(x)=rx(1-{x\over N} ) dtdx=f(x)=rx(1Nx)
单位时间的捕捞量与鱼量x成正比,比例常数为E
h ( x ) = E x h(x)=Ex h(x)=Ex
渔场鱼量满足方程
d x d t = F ( x ) = r x ( 1 − x N ) − E x {dx\over dt}=F(x)=rx(1-{x\over N})-Ex dtdx=F(x)=rx(1Nx)Ex
求方程的平衡点和稳定性分析,不解方程

可以得到结论

最大持续产量
h m = r N 4 h_m={rN\over 4} hm=4rN
此时稳定平衡点
x ∗ = N 2 E ∗ = r 2 x^*={N\over 2}\\E^*={r\over 2} x=2NE=2r

效益模型

单位时间利润
R = T − S = p E x − c E R=T-S=pEx-cE R=TS=pExcE
稳定条件代入
x = x 0 = N ( 1 − E N ) R ( E ) = T ( E ) − S ( E ) = p N E ( 1 − E r ) − c E x=x_0=N(1-{E\over N})\\R(E)=T(E)-S(E)=pNE({1-{E\over r}})-cE x=x0=N(1NE)R(E)=T(E)S(E)=pNE(1rE)cE

3. 资金、劳动与经济增长

Douglas生产函数

Q(t)表示t时刻的产值;K(t)表示t时刻的资金;L(t)表示t时刻的劳动力。

三者具有一定的函数关系
Q ( t ) = F ( K ( t ) , L ( t ) ) Q(t)=F(K(t),L(t)) Q(t)=F(K(t),L(t))
确定函数形式,设置变量z,y分别表示每个劳动力的产值,每个劳动力的投资
z = Q L , y = K L z={Q\over L},y={K\over L} z=LQ,y=LK
作出假设:z随y的增加而增长,但增长速度递减(参考效益函数),这个关系用简化表达式表示
z = c y α , 0 < α < 1 z=cy^α,0<α<1 z=cyα0α1
由此可得
Q = c K α L 1 − α , 0 < α < 1 g e n e r a l   f o r m u l a   Q = c K α L β , 0 < α < 1 , 0 < β < 1 K Q K + L Q L = Q Q=cK^αL^{1-α},0<α<1\\general\ formula\ Q=cK^αL^β,0<α<1,0<β<1\\KQ_K+LQ_L=Q Q=cKαL1α0α1general formula Q=cKαLβ0α10β1KQK+LQL=Q
QK表示Q对K偏导,单位资金创造的产值;QL表示Q对L偏导,单位劳动力创造的产值。

4.捕食者与食饵模型

Volterra食饵-捕食者模型

设t时刻食饵数量x(t),捕食者y(t)。

食饵理想生存状态下,增长率为r;捕食者存在情况下,增长率减少,减少率与捕食者数量成正比
r ∗ = r − a y r^*=r-ay r=ray
x(t)满足方程
d x d t = x ( r − a y ) = r x − a x y {dx\over dt}=x(r-ay)=rx-axy dtdx=x(ray)=rxaxy
系数a反应捕食者的捕食能力

捕食者依靠食饵生存,独立生存状态下死亡率为d;食饵存在时为捕食者提供食物,捕食者死亡率降低,使其增长,增长率与食饵数量成正比
d ∗ = − d + b x d^*=-d+bx d=d+bx
y(t)满足方程
d y d t = y ( − d + b x ) = − d y + b x y {dy\over dt}=y(-d+bx)=-dy+bxy dtdy=y(d+bx)=dy+bxy

5.传染病模型

SI模型

将人群分为两类:易感人群和已感染者

设地区总人数不变(N),t时刻健康人和患者占总人数的比例分别为s(t)和i(t),s+i=1;每个患者感染率为λ。

显然有满足方程
d i d t = λ s i d i d t = λ i ( 1 − i ) , i ( 0 ) = i 0 {di\over dt}=λsi\\{di\over dt}=λi(1-i),i(0)=i_0 dtdi=λsidtdi=λi(1i),i(0)=i0

SIS模型

增加一类治愈人群,但是治愈后的人没有免疫作用

设治愈率为μ,满足方程
d i d t = λ s i − μ i , s = 1 − i {di\over dt}=λsi-μi,s=1-i dtdi=λsiμis=1i

SIR模型

增加一列治愈人群,治愈后有免疫作用或者因病死亡,记人数为r(t)
s ( t ) + i ( t ) + r ( t ) = 1 s(t)+i(t)+r(t)=1 s(t)+i(t)+r(t)=1
仍有
d i d t = λ s i − μ i {di\over dt}=λsi-μi dtdi=λsiμi
此时s与i不再是简单的相加为1的关系
d s d t = − λ s i d r d t = μ i {ds\over dt}=-λsi\\{dr\over dt}=μi dtds=λsidtdr=μi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值