第五章 微分方程模型
微分方程:包含连续变化的自变量、未知函数及其变化率的方程式
动态过程的变化规律一般用微分方程的动态模型建立,主要目的是研究某种意义下稳定状态的特征
1.人口增长 logistic模型
理想状况下,不受资源和环境的限制,此时增长率r为常数,微分方程的满足条件
d
t
d
t
=
r
x
,
x
(
0
)
=
x
0
{dt\over dt}=rx,x(0)=x_0
dtdt=rx,x(0)=x0
考虑资源和环境的限制等因素的阻滞作用,logistics模型
增长率r是随x变化的函数r(x)=a+bx,引入两个参数:
- 内禀增长率r r是理论上x=0时的增长率,r(0)=r。
- 人口容量xm xm是资源和环境所能容纳的最大人口数量
由参数定义得到
r
(
x
)
=
r
(
1
−
x
x
m
)
r(x)=r(1-{x\over x_m} )
r(x)=r(1−xmx)
得到logistics模型
d
x
d
t
=
r
x
(
1
−
x
x
m
)
,
x
(
0
)
=
x
0
{dx\over dt}=rx(1-{x\over x_m}),x(0)=x_0
dtdx=rx(1−xmx),x(0)=x0
2.捕鱼业的可持续
产量模型
设t时刻渔场中的鱼量为x(t),无捕捞条件下x(t)服从logistic模型
d
x
d
t
=
f
(
x
)
=
r
x
(
1
−
x
N
)
{dx\over dt}=f(x)=rx(1-{x\over N} )
dtdx=f(x)=rx(1−Nx)
单位时间的捕捞量与鱼量x成正比,比例常数为E
h
(
x
)
=
E
x
h(x)=Ex
h(x)=Ex
渔场鱼量满足方程
d
x
d
t
=
F
(
x
)
=
r
x
(
1
−
x
N
)
−
E
x
{dx\over dt}=F(x)=rx(1-{x\over N})-Ex
dtdx=F(x)=rx(1−Nx)−Ex
求方程的平衡点和稳定性分析,不解方程
可以得到结论
最大持续产量
h
m
=
r
N
4
h_m={rN\over 4}
hm=4rN
此时稳定平衡点
x
∗
=
N
2
E
∗
=
r
2
x^*={N\over 2}\\E^*={r\over 2}
x∗=2NE∗=2r
效益模型
单位时间利润
R
=
T
−
S
=
p
E
x
−
c
E
R=T-S=pEx-cE
R=T−S=pEx−cE
稳定条件代入
x
=
x
0
=
N
(
1
−
E
N
)
R
(
E
)
=
T
(
E
)
−
S
(
E
)
=
p
N
E
(
1
−
E
r
)
−
c
E
x=x_0=N(1-{E\over N})\\R(E)=T(E)-S(E)=pNE({1-{E\over r}})-cE
x=x0=N(1−NE)R(E)=T(E)−S(E)=pNE(1−rE)−cE
3. 资金、劳动与经济增长
Douglas生产函数
Q(t)表示t时刻的产值;K(t)表示t时刻的资金;L(t)表示t时刻的劳动力。
三者具有一定的函数关系
Q
(
t
)
=
F
(
K
(
t
)
,
L
(
t
)
)
Q(t)=F(K(t),L(t))
Q(t)=F(K(t),L(t))
确定函数形式,设置变量z,y分别表示每个劳动力的产值,每个劳动力的投资
z
=
Q
L
,
y
=
K
L
z={Q\over L},y={K\over L}
z=LQ,y=LK
作出假设:z随y的增加而增长,但增长速度递减(参考效益函数),这个关系用简化表达式表示
z
=
c
y
α
,
0
<
α
<
1
z=cy^α,0<α<1
z=cyα,0<α<1
由此可得
Q
=
c
K
α
L
1
−
α
,
0
<
α
<
1
g
e
n
e
r
a
l
f
o
r
m
u
l
a
Q
=
c
K
α
L
β
,
0
<
α
<
1
,
0
<
β
<
1
K
Q
K
+
L
Q
L
=
Q
Q=cK^αL^{1-α},0<α<1\\general\ formula\ Q=cK^αL^β,0<α<1,0<β<1\\KQ_K+LQ_L=Q
Q=cKαL1−α,0<α<1general formula Q=cKαLβ,0<α<1,0<β<1KQK+LQL=Q
QK表示Q对K偏导,单位资金创造的产值;QL表示Q对L偏导,单位劳动力创造的产值。
4.捕食者与食饵模型
Volterra食饵-捕食者模型
设t时刻食饵数量x(t),捕食者y(t)。
食饵理想生存状态下,增长率为r;捕食者存在情况下,增长率减少,减少率与捕食者数量成正比
r
∗
=
r
−
a
y
r^*=r-ay
r∗=r−ay
x(t)满足方程
d
x
d
t
=
x
(
r
−
a
y
)
=
r
x
−
a
x
y
{dx\over dt}=x(r-ay)=rx-axy
dtdx=x(r−ay)=rx−axy
系数a反应捕食者的捕食能力
捕食者依靠食饵生存,独立生存状态下死亡率为d;食饵存在时为捕食者提供食物,捕食者死亡率降低,使其增长,增长率与食饵数量成正比
d
∗
=
−
d
+
b
x
d^*=-d+bx
d∗=−d+bx
y(t)满足方程
d
y
d
t
=
y
(
−
d
+
b
x
)
=
−
d
y
+
b
x
y
{dy\over dt}=y(-d+bx)=-dy+bxy
dtdy=y(−d+bx)=−dy+bxy
5.传染病模型
SI模型
将人群分为两类:易感人群和已感染者
设地区总人数不变(N),t时刻健康人和患者占总人数的比例分别为s(t)和i(t),s+i=1;每个患者感染率为λ。
显然有满足方程
d
i
d
t
=
λ
s
i
d
i
d
t
=
λ
i
(
1
−
i
)
,
i
(
0
)
=
i
0
{di\over dt}=λsi\\{di\over dt}=λi(1-i),i(0)=i_0
dtdi=λsidtdi=λi(1−i),i(0)=i0
SIS模型
增加一类治愈人群,但是治愈后的人没有免疫作用
设治愈率为μ,满足方程
d
i
d
t
=
λ
s
i
−
μ
i
,
s
=
1
−
i
{di\over dt}=λsi-μi,s=1-i
dtdi=λsi−μi,s=1−i
SIR模型
增加一列治愈人群,治愈后有免疫作用或者因病死亡,记人数为r(t)
s
(
t
)
+
i
(
t
)
+
r
(
t
)
=
1
s(t)+i(t)+r(t)=1
s(t)+i(t)+r(t)=1
仍有
d
i
d
t
=
λ
s
i
−
μ
i
{di\over dt}=λsi-μi
dtdi=λsi−μi
此时s与i不再是简单的相加为1的关系
d
s
d
t
=
−
λ
s
i
d
r
d
t
=
μ
i
{ds\over dt}=-λsi\\{dr\over dt}=μi
dtds=−λsidtdr=μi