第六章 差分方程与代数方程模型
离散时间点描述研究对象的动态变化。实际问题本身以离散形式出现,建立差分方程模型可解决一些实际问题,如研究对象随离散时间的变化规律。
而不考虑时间因素做静态问题处理时,可以建立代数方程模型。
两个模型求解过程(矩阵、向量的数学表达形式)类似,结合学习。
基础知识:差分方程的类型、求解及稳定性
1.贷款问题 |等额本息贷款、等额本金贷款
等额本息贷款
等额本息贷款:每月归还的本息金额相同
建模
每月还款金额为a,贷款总额为x0,月利率为r,第k月还款后尚欠金额为xk,贷款期限为n,则
x
k
=
x
k
−
1
(
r
+
1
)
−
a
,
k
=
1
,
2
,
⋅
⋅
⋅
,
n
x_k=x_{k-1}(r+1)-a,k=1,2,···,n
xk=xk−1(r+1)−a,k=1,2,⋅⋅⋅,n
递推得
x
n
=
x
0
(
1
+
r
)
n
−
a
(
1
+
r
)
n
−
1
r
x
n
=
0
x_n=x_0(1+r)^n-a{{(1+r)^n-1}\over r} \\x_n=0
xn=x0(1+r)n−ar(1+r)n−1xn=0
等额本金贷款
每月归还同等数额的本金,加上所欠本金的总利息
同样有差分方程
x
k
=
x
k
−
1
−
x
0
r
n
,
k
=
2
,
3
,
⋅
⋅
⋅
,
n
x
k
=
x
0
n
+
x
0
(
1
−
k
−
1
n
)
r
,
k
=
1
,
2
,
⋅
⋅
⋅
,
n
x_k=x_{k-1}-{x_0r\over n},k=2,3,···,n\\x_k={x_0\over n}+x_0(1-{{k-1}\over n})r,k=1,2,···,n
xk=xk−1−nx0r,k=2,3,⋅⋅⋅,nxk=nx0+x0(1−nk−1)r,k=1,2,⋅⋅⋅,n
比较两种方式有结论:等额本金还款总额小于等额本息还款
2.物价波动
设第k个时段商品数量为xk,价格为yk
按照经济规律,k时段的价格与消费者当前需求决定;k时段的商品数量由上一时段的价格决定。
价格与商品数量在平衡值上下波动,价格与商品数量的偏离值成(正\反)比关系
有差分方程组
y
k
−
y
0
=
−
α
(
x
k
−
x
0
)
,
k
=
1
,
2
⋅
⋅
⋅
,
x
k
+
1
−
x
0
=
β
(
y
k
−
y
0
)
,
k
=
1
,
2
⋅
⋅
⋅
,
y_k-y_0=-α(x_k-x_0),k=1,2···,\\x_{k+1}-x_0=β(y_k-y_0),k=1,2···,
yk−y0=−α(xk−x0),k=1,2⋅⋅⋅,xk+1−x0=β(yk−y0),k=1,2⋅⋅⋅,
可以递推解出方程
x
k
+
1
−
x
0
=
−
(
α
β
)
k
(
x
1
−
x
0
)
x_{k+1}-x_0=-(αβ)^k(x_1-x_0)
xk+1−x0=−(αβ)k(x1−x0)
比例系数α和β可以得到进一步解释:α反应消费者需求的敏感程度;β反应生产者对价格的敏感程度。
3. Leslie模型
按年龄分组的种群增长模型
模型假设
- 按年龄大小等间隔地分为n个年龄组;与之相对应的,将时间也分成年龄组区间大小相等的时段。
- 繁殖率与死亡率不随时段变化,与年龄组有关
模型建立
xi(k):第i个年龄组第k个时段的种群数量
bi:第i个年龄组的繁殖率
di:第i个年龄组的死亡率,则si=1-di为存活率
第一个年龄组的k+1时段的数量是各个年龄组第k个时段的繁殖数量之和
x
1
(
k
+
1
)
=
∑
i
=
1
n
b
i
x
i
(
k
)
,
k
=
0
,
1
,
2
⋅
⋅
⋅
x_1(k+1)=\sum_{i=1}^n{b_ix_i(k)},\ k=0,1,2···
x1(k+1)=i=1∑nbixi(k), k=0,1,2⋅⋅⋅
k时段的i年龄组在k+1时段演变成i+1年龄组
x
i
+
1
(
k
+
1
)
=
s
i
x
i
(
k
)
x_{i+1}(k+1)=s_ix_i(k)
xi+1(k+1)=sixi(k)
上述两式构成种群增长模型
矩阵分布形式
x
(
k
)
=
[
x
1
(
k
)
x
2
(
k
)
x
3
(
k
)
⋯
x
n
(
k
)
]
T
\mathbf x(k)=\begin{bmatrix} x_1(k) & x_2(k) & x_3(k) & \cdots&x_n(k) \end{bmatrix}^T
x(k)=[x1(k)x2(k)x3(k)⋯xn(k)]T
繁殖率与存活率形成如下矩阵
L
=
[
b
1
b
2
⋯
b
n
−
1
b
n
s
1
0
⋯
0
0
0
s
2
⋯
0
0
⋮
⋮
⋮
⋮
0
0
⋯
s
n
−
1
0
]
\mathbf L= \begin{bmatrix} b_1&b_2&\cdots&b_{n-1}&b_n\\ s_1&0&\cdots&0&0\\ 0&s_2&\cdots&0&0\\ \vdots&\vdots&\ &\vdots&\vdots\\ 0&0&\cdots&s_{n-1}&0 \end{bmatrix}
L=⎣⎢⎢⎢⎢⎢⎡b1s10⋮0b20s2⋮0⋯⋯⋯ ⋯bn−100⋮sn−1bn00⋮0⎦⎥⎥⎥⎥⎥⎤
增长模型可以简洁表示为矩阵向量形式
x
(
k
+
1
)
=
L
x
(
k
)
x
(
k
)
=
L
k
x
(
0
)
\mathbf x(k+1)=\mathbf {Lx}(k)\\\mathbf x(k)=\mathbf {L^kx}(0)
x(k+1)=Lx(k)x(k)=Lkx(0)
L矩阵称为Leslie矩阵,上述矩阵等式称为Leslie模型
饲养动物种群的持续稳定模型
hi:第i年龄组种群收获系数,表示收获量占总量的比例。持续稳定收获,增长量等于收获量
x
i
(
k
+
1
)
−
x
i
(
k
)
=
h
i
x
i
(
k
+
1
)
x_i(k+1)-x_i(k)=h_ix_i(k+1)
xi(k+1)−xi(k)=hixi(k+1)
hi的对角矩阵
H
=
[
h
1
0
⋯
0
0
h
1
⋯
0
⋮
⋮
⋮
0
0
⋯
h
n
]
\mathbf H=\begin{bmatrix} h_1&0&\cdots&0\\ 0&h_1&\cdots&0\\ \vdots&\vdots&&\vdots\\ 0&0&\cdots&h_n \end{bmatrix}
H=⎣⎢⎢⎢⎡h10⋮00h1⋮0⋯⋯⋯00⋮hn⎦⎥⎥⎥⎤
矩阵向量形式
x
(
k
+
1
)
−
x
(
k
)
=
H
x
(
k
+
1
)
\mathbf {x(k+1)-x(k)=Hx(k+1)}
x(k+1)−x(k)=Hx(k+1)
进一步化为
L
x
(
k
)
−
x
(
k
)
=
H
L
x
(
k
)
x
=
(
L
−
H
L
)
x
=
L
′
x
\mathbf{Lx(k)-x(k)=HLx(k)}\\ \mathbf{x=(L-HL)x=L'x}
Lx(k)−x(k)=HLx(k)x=(L−HL)x=L′x
得到持续收获的条件
4. Logistic模型|离散形式 差分方程
信息传播
记总人数为N,第k天已获知信息的人数为pk,传播率为c(类比SI模型)
可以得到差分方程
p
k
+
1
−
p
k
=
c
p
k
(
N
−
p
k
)
p_{k+1}-p_k=cp_k(N-p_k)
pk+1−pk=cpk(N−pk)
如果考虑认为干预,被制止传播谣言的人不在听信,可以理解为退出信息系统(SIR模型)
设干预的比例常数为a,第k天退出系统的人数为qk
q
k
+
1
−
q
k
=
a
p
k
p
k
+
1
−
p
k
=
c
p
k
(
N
−
q
k
−
p
k
)
−
a
p
k
q_{k+1}-q_k=ap_k\\p_{k+1}-p_k=cp_k(N-q_k-p_k)-ap_k
qk+1−qk=apkpk+1−pk=cpk(N−qk−pk)−apk
5.量纲分析法 |量纲齐次原则
量纲齐次原则
π定理
设m个有量量纲的物理量qm,之间存在与量纲单位选取无关的物理定律,数学上表示为
f
(
q
1
,
q
2
,
⋅
⋅
⋅
,
q
m
)
=
0
f(q_1,q_2,···,q_m)=0
f(q1,q2,⋅⋅⋅,qm)=0
若基本量纲记作Xn,qm的量纲可表示为
[
q
j
]
=
∏
i
=
1
n
X
i
a
i
j
,
j
=
1
,
⋅
⋅
⋅
,
m
[q_j]=\prod^n_{i=1}{X}_i^{a_{ij}},j=1,···,m
[qj]=i=1∏nXiaij,j=1,⋅⋅⋅,m
设矩阵A为量纲矩阵
A
=
(
a
i
j
)
n
×
m
A=(a_{ij})_{n×m}
A=(aij)n×m
若A的秩
R
a
n
k
A
=
r
Rank\ A=r
Rank A=r
设齐次线性方程组
A
Y
=
0
,
Y
=
(
y
1
,
y
2
,
⋅
⋅
⋅
,
y
m
)
T
AY=0,Y=(y_1,y_2,···,y_m)^T
AY=0,Y=(y1,y2,⋅⋅⋅,ym)T
它的m-r个基本解记为
y
(
s
)
=
(
y
1
(
s
)
,
y
2
(
s
)
,
⋅
⋅
⋅
,
y
m
(
s
)
)
T
,
s
=
1
,
2
,
⋅
⋅
⋅
,
m
−
r
y^{(s)}=({y}_1^{(s)},{y}_2^{(s)},···,{y}_m^{(s)})^T,s=1,2,···,m-r
y(s)=(y1(s),y2(s),⋅⋅⋅,ym(s))T,s=1,2,⋅⋅⋅,m−r
则存在m-r个互相独立的无量量纲
π
s
=
∏
j
=
1
m
q
j
y
j
(
s
)
,
s
=
1
,
2
,
⋅
⋅
⋅
,
m
−
r
π_s=\prod^m_{j=1}q_j^{y_j^{(s)}},s=1,2,···,m-r
πs=j=1∏mqjyj(s),s=1,2,⋅⋅⋅,m−r
且有
F
(
π
1
,
π
2
,
⋅
⋅
⋅
,
π
m
−
r
)
=
0
F(π_1,π_2,···,π_{m-r})=0
F(π1,π2,⋅⋅⋅,πm−r)=0
F为待定函数
结合实例容易理解
例:原子弹能量估计
量纲分析的局限性
一些物理公式常常含有的三角函数、指数函数等是不能用量纲分析所得到的,因为这些函数的自变量和因变量都是无量纲的
6. CT技术图像重建|代数模型
数学原理
根据X射线入射与出射的光线强度的衰减,得到各个断面对X射线的衰减系数,进一步推算得到反映人体器官和组织的大小、形状、密度的图像,即图像重建。
设衰减系数为μ,由于光线入射到不同位置时,某一平面的衰减系数是不同的,若在该平面构建xy坐标系,可以得到u(x,y)函数,当射线沿直线L穿行时,光强与衰减系数遵循如下规律:
I
=
I
0
e
−
∫
L
μ
(
x
,
y
)
d
l
∫
L
μ
(
x
,
y
)
d
l
=
l
n
I
0
I
I=I_0e^{-\int_Lμ(x,y)dl} \\\int_Lμ(x,y)dl=ln{I_0\over I}
I=I0e−∫Lμ(x,y)dl∫Lμ(x,y)dl=lnII0
代数模型
将待测平面图形分成若干小正方形,称为像素。
设有m个像素(记j=1,2,···,m),n束射线(记i=1,2,···,n),第i束射线记作Li
∑
j
∈
J
(
L
i
)
μ
j
Δ
l
j
=
l
n
I
0
I
\sum_{j∈J(L_i)}μ_jΔl_j=ln{I_0\over I}
j∈J(Li)∑μjΔlj=lnII0
Δl为射线在像素穿行的长度,J表示射线束穿过像素的集合
求解方法:矩阵向量的数学表示形式(中心线法、面积法、中心法),构成代数方程AX=b