第六章 差分方程与代数方程模型

第六章 差分方程与代数方程模型

离散时间点描述研究对象的动态变化。实际问题本身以离散形式出现,建立差分方程模型可解决一些实际问题,如研究对象随离散时间的变化规律。

而不考虑时间因素做静态问题处理时,可以建立代数方程模型。

两个模型求解过程(矩阵、向量的数学表达形式)类似,结合学习。

基础知识差分方程的类型求解及稳定性

1.贷款问题 |等额本息贷款、等额本金贷款

等额本息贷款

等额本息贷款:每月归还的本息金额相同

建模

每月还款金额为a,贷款总额为x0,月利率为r,第k月还款后尚欠金额为xk,贷款期限为n,则
x k = x k − 1 ( r + 1 ) − a , k = 1 , 2 , ⋅ ⋅ ⋅ , n x_k=x_{k-1}(r+1)-a,k=1,2,···,n xk=xk1(r+1)a,k=1,2,,n
递推得
x n = x 0 ( 1 + r ) n − a ( 1 + r ) n − 1 r x n = 0 x_n=x_0(1+r)^n-a{{(1+r)^n-1}\over r} \\x_n=0 xn=x0(1+r)nar(1+r)n1xn=0

等额本金贷款

每月归还同等数额的本金,加上所欠本金的总利息

同样有差分方程
x k = x k − 1 − x 0 r n , k = 2 , 3 , ⋅ ⋅ ⋅ , n x k = x 0 n + x 0 ( 1 − k − 1 n ) r , k = 1 , 2 , ⋅ ⋅ ⋅ , n x_k=x_{k-1}-{x_0r\over n},k=2,3,···,n\\x_k={x_0\over n}+x_0(1-{{k-1}\over n})r,k=1,2,···,n xk=xk1nx0r,k=2,3,,nxk=nx0+x0(1nk1)r,k=1,2,,n
比较两种方式有结论:等额本金还款总额小于等额本息还款

2.物价波动

设第k个时段商品数量为xk,价格为yk

按照经济规律,k时段的价格与消费者当前需求决定;k时段的商品数量由上一时段的价格决定。

价格与商品数量在平衡值上下波动,价格与商品数量的偏离值成(正\反)比关系

有差分方程组
y k − y 0 = − α ( x k − x 0 ) , k = 1 , 2 ⋅ ⋅ ⋅ , x k + 1 − x 0 = β ( y k − y 0 ) , k = 1 , 2 ⋅ ⋅ ⋅ , y_k-y_0=-α(x_k-x_0),k=1,2···,\\x_{k+1}-x_0=β(y_k-y_0),k=1,2···, yky0=α(xkx0),k=1,2xk+1x0=β(yky0),k=1,2
可以递推解出方程
x k + 1 − x 0 = − ( α β ) k ( x 1 − x 0 ) x_{k+1}-x_0=-(αβ)^k(x_1-x_0) xk+1x0=(αβ)k(x1x0)
比例系数α和β可以得到进一步解释:α反应消费者需求的敏感程度;β反应生产者对价格的敏感程度。

3. Leslie模型

按年龄分组的种群增长模型

模型假设
  • 按年龄大小等间隔地分为n个年龄组;与之相对应的,将时间也分成年龄组区间大小相等的时段。
  • 繁殖率与死亡率不随时段变化,与年龄组有关
模型建立

xi(k):第i个年龄组第k个时段的种群数量

bi:第i个年龄组的繁殖率

di:第i个年龄组的死亡率,则si=1-di为存活率

第一个年龄组的k+1时段的数量是各个年龄组第k个时段的繁殖数量之和
x 1 ( k + 1 ) = ∑ i = 1 n b i x i ( k ) ,   k = 0 , 1 , 2 ⋅ ⋅ ⋅ x_1(k+1)=\sum_{i=1}^n{b_ix_i(k)},\ k=0,1,2··· x1(k+1)=i=1nbixi(k), k=0,1,2
k时段的i年龄组在k+1时段演变成i+1年龄组
x i + 1 ( k + 1 ) = s i x i ( k ) x_{i+1}(k+1)=s_ix_i(k) xi+1(k+1)=sixi(k)
上述两式构成种群增长模型

矩阵分布形式
x ( k ) = [ x 1 ( k ) x 2 ( k ) x 3 ( k ) ⋯ x n ( k ) ] T \mathbf x(k)=\begin{bmatrix} x_1(k) & x_2(k) & x_3(k) & \cdots&x_n(k) \end{bmatrix}^T x(k)=[x1(k)x2(k)x3(k)xn(k)]T
繁殖率与存活率形成如下矩阵
L = [ b 1 b 2 ⋯ b n − 1 b n s 1 0 ⋯ 0 0 0 s 2 ⋯ 0 0 ⋮ ⋮   ⋮ ⋮ 0 0 ⋯ s n − 1 0 ] \mathbf L= \begin{bmatrix} b_1&b_2&\cdots&b_{n-1}&b_n\\ s_1&0&\cdots&0&0\\ 0&s_2&\cdots&0&0\\ \vdots&\vdots&\ &\vdots&\vdots\\ 0&0&\cdots&s_{n-1}&0 \end{bmatrix} L=b1s100b20s20 bn100sn1bn000
增长模型可以简洁表示为矩阵向量形式
x ( k + 1 ) = L x ( k ) x ( k ) = L k x ( 0 ) \mathbf x(k+1)=\mathbf {Lx}(k)\\\mathbf x(k)=\mathbf {L^kx}(0) x(k+1)=Lx(k)x(k)=Lkx(0)
L矩阵称为Leslie矩阵,上述矩阵等式称为Leslie模型

饲养动物种群的持续稳定模型

hi:第i年龄组种群收获系数,表示收获量占总量的比例。持续稳定收获,增长量等于收获量
x i ( k + 1 ) − x i ( k ) = h i x i ( k + 1 ) x_i(k+1)-x_i(k)=h_ix_i(k+1) xi(k+1)xi(k)=hixi(k+1)
hi的对角矩阵
H = [ h 1 0 ⋯ 0 0 h 1 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ h n ] \mathbf H=\begin{bmatrix} h_1&0&\cdots&0\\ 0&h_1&\cdots&0\\ \vdots&\vdots&&\vdots\\ 0&0&\cdots&h_n \end{bmatrix} H=h1000h1000hn
矩阵向量形式
x ( k + 1 ) − x ( k ) = H x ( k + 1 ) \mathbf {x(k+1)-x(k)=Hx(k+1)} x(k+1)x(k)=Hx(k+1)
进一步化为
L x ( k ) − x ( k ) = H L x ( k ) x = ( L − H L ) x = L ′ x \mathbf{Lx(k)-x(k)=HLx(k)}\\ \mathbf{x=(L-HL)x=L'x} Lx(k)x(k)=HLx(k)x=(LHL)x=Lx
得到持续收获的条件

4. Logistic模型|离散形式 差分方程

信息传播

记总人数为N,第k天已获知信息的人数为pk,传播率为c(类比SI模型)

可以得到差分方程
p k + 1 − p k = c p k ( N − p k ) p_{k+1}-p_k=cp_k(N-p_k) pk+1pk=cpk(Npk)
如果考虑认为干预,被制止传播谣言的人不在听信,可以理解为退出信息系统(SIR模型)

设干预的比例常数为a,第k天退出系统的人数为qk
q k + 1 − q k = a p k p k + 1 − p k = c p k ( N − q k − p k ) − a p k q_{k+1}-q_k=ap_k\\p_{k+1}-p_k=cp_k(N-q_k-p_k)-ap_k qk+1qk=apkpk+1pk=cpk(Nqkpk)apk

5.量纲分析法 |量纲齐次原则

量纲齐次原则

π定理

设m个有量量纲的物理量qm,之间存在与量纲单位选取无关的物理定律,数学上表示为
f ( q 1 , q 2 , ⋅ ⋅ ⋅ , q m ) = 0 f(q_1,q_2,···,q_m)=0 f(q1,q2,,qm)=0
若基本量纲记作Xn,qm的量纲可表示为
[ q j ] = ∏ i = 1 n X i a i j , j = 1 , ⋅ ⋅ ⋅ , m [q_j]=\prod^n_{i=1}{X}_i^{a_{ij}},j=1,···,m [qj]=i=1nXiaij,j=1,,m
设矩阵A为量纲矩阵
A = ( a i j ) n × m A=(a_{ij})_{n×m} A=(aij)n×m
若A的秩
R a n k   A = r Rank\ A=r Rank A=r
设齐次线性方程组
A Y = 0 , Y = ( y 1 , y 2 , ⋅ ⋅ ⋅ , y m ) T AY=0,Y=(y_1,y_2,···,y_m)^T AY=0,Y=(y1,y2,,ym)T
它的m-r个基本解记为
y ( s ) = ( y 1 ( s ) , y 2 ( s ) , ⋅ ⋅ ⋅ , y m ( s ) ) T , s = 1 , 2 , ⋅ ⋅ ⋅ , m − r y^{(s)}=({y}_1^{(s)},{y}_2^{(s)},···,{y}_m^{(s)})^T,s=1,2,···,m-r y(s)=(y1(s),y2(s),,ym(s))T,s=1,2,,mr
则存在m-r个互相独立的无量量纲
π s = ∏ j = 1 m q j y j ( s ) , s = 1 , 2 , ⋅ ⋅ ⋅ , m − r π_s=\prod^m_{j=1}q_j^{y_j^{(s)}},s=1,2,···,m-r πs=j=1mqjyj(s),s=1,2,,mr
且有
F ( π 1 , π 2 , ⋅ ⋅ ⋅ , π m − r ) = 0 F(π_1,π_2,···,π_{m-r})=0 F(π1,π2,,πmr)=0
F为待定函数

结合实例容易理解

例:原子弹能量估计

量纲分析的局限性

一些物理公式常常含有的三角函数、指数函数等是不能用量纲分析所得到的,因为这些函数的自变量和因变量都是无量纲的

6. CT技术图像重建|代数模型

数学原理

根据X射线入射与出射的光线强度的衰减,得到各个断面对X射线的衰减系数,进一步推算得到反映人体器官和组织的大小、形状、密度的图像,即图像重建。

设衰减系数为μ,由于光线入射到不同位置时,某一平面的衰减系数是不同的,若在该平面构建xy坐标系,可以得到u(x,y)函数,当射线沿直线L穿行时,光强与衰减系数遵循如下规律:
I = I 0 e − ∫ L μ ( x , y ) d l ∫ L μ ( x , y ) d l = l n I 0 I I=I_0e^{-\int_Lμ(x,y)dl} \\\int_Lμ(x,y)dl=ln{I_0\over I} I=I0eLμ(x,y)dlLμ(x,y)dl=lnII0

代数模型

将待测平面图形分成若干小正方形,称为像素。

设有m个像素(记j=1,2,···,m),n束射线(记i=1,2,···,n),第i束射线记作Li
∑ j ∈ J ( L i ) μ j Δ l j = l n I 0 I \sum_{j∈J(L_i)}μ_jΔl_j=ln{I_0\over I} jJ(Li)μjΔlj=lnII0
Δl为射线在像素穿行的长度,J表示射线束穿过像素的集合

求解方法:矩阵向量的数学表示形式(中心线法、面积法、中心法),构成代数方程AX=b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值