第三章 简单的优化模型

第三章 简单的优化模型

本章介绍简单的优化模型,归结为微积分中的函数极值问题,直接用微分法求解。

建立优化模型的步骤:

  • 做出若干合理简化的假设

  • 首先确定优化的目标、寻求决策和决策受到的限制

  • 运用数学工具(变量、常数、函数)解决

  • 最后运用微分法求出最优决策

以下选出几个实例学习


1.存贮模型

1.1不允许缺货的存贮模型

问题:
配件厂生产若干种部件,每次生产因更换设备要付生产准备费(与生产数量无关),部件生产大于需求时占用仓库要付贮存费。设计生产计划,确定生产周期,单个周期产量,可使日均费用最少。

问题分析:
经过试算可以发现,生产周期短、产量小,会使贮存费小,准备费大;而周期长、产量大,会使贮存费大,准备费小。连续性变化,必然存在一个中间值为最佳周期,达到日均费用最小。

模型假设:

  • 使用连续模型,生产周期T和产量Q视为连续性变量。
  • 每天需求量为常数r,生产准备费为C1,每天每件产品贮存费为C2
  • 生产能力足够大,不允许缺货。

模型建立:
Q = r T Q=rT Q=rT
在这里插入图片描述

一个周期内的贮存费
C = C 1 + C 2 ∫ 0 T q ( t ) d t = C 1 + C 2 r T 2 / 2 C=C_1+C_2\int_{0}^Tq(t)dt=C_1+C_2rT^2/2 C=C1+C20Tq(t)dt=C1+C2rT2/2
日均费用
C ‾ = C 1 / T + C 2 r T / 2 \overline C=C_1/T+C_2rT/2 C=C1/T+C2rT/2
取最小值得
T = 2 C 1 C 2 r Q = 2 C 1 r C 2 C m i n = 2 C 1 C 2 r T=\sqrt{{2C_1}\over{C_2r}}\\ Q=\sqrt{2C_1r\over C_2} \\C_{min}=\sqrt{2C_1C_2r} T=C2r2C1 Q=C22C1r Cmin=2C1C2r

1.2允许缺货的存贮模型

模型假设:
与上述模型类似,只是生产能力足够大,允许缺货,每天每件产品损失费为C3,缺货数量在下次生产补足。

模型建立:
Q = r T 1 Q=rT_1 Q=rT1
在这里插入图片描述

可得总费用为
C = C 1 + C 2 ∫ 0 T 1 q ( t ) d t − C 3 ∫ T 1 T q ( t ) d t = C 1 + C 2 r T 1 2 / 2 + C 3 r ( T − T 1 ) 2 / 2 C=C_1+C_2\int_{0}^{T_1}q(t)dt-C_3\int_{T_1}^{T}q(t)dt=C_1+C_2r{T_1}^2/2+C_3r(T-T_1)^2/2 C=C1+C20T1q(t)dtC3T1Tq(t)dt=C1+C2rT12/2+C3r(TT1)2/2
日均费用,化为关于T、Q的二元函数
C ‾ ( T , Q ) = C 1 T + C 2 Q 2 2 r T + C 3 ( r T − Q ) 2 2 r T \overline C(T,Q)={C_1\over T}+{C_2Q^2\over 2rT}+{C_3(rT-Q)^2\over 2rT} C(T,Q)=TC1+2rTC2Q2+2rTC3(rTQ)2
T、Q的偏导均为零得到T、Q的最优解


2.求解杯子的重心模型

问题:
杯子的重心随着杯中液体的液面高度的变化而变化,在液面升高过程中,重心会先降低后又升高,其中必然存在一个最低点,建立模型求解最低点,最不容易倾倒的状态。

问题分析:
杯子的重心由杯中液体、杯侧壁和底盘质量共同决定;并且重心在杯子的中轴线上下移动。结合物理背景知识,物体重心计算公式(等效力矩 <印象中>)。为简化问题,不妨从忽略底盘质量开始考虑。

模型一假设:

  • 杯子材料均匀分布,形状为圆柱体,高为单位1
  • 满杯状态的液体质量为W1,则液面高度为x时,质量为xW1,液体重心S1=x/2
  • 侧壁质量为W2,底盘质量忽略不计,杯子重心S2=1/2

模型一建立:

物理重心求解
( x W 1 + W 2 ) S = S 1 x W 1 + S 2 W 2 (xW_1+W_2)S=S_1xW_1+S_2W_2 (xW1+W2)S=S1xW1+S2W2
可以求解得到
S ( x ) = x 2 + a 2 ( x + a ) S(x)={{x^2+a}\over2(x+a)} S(x)=2(x+a)x2+a

d S d x = 0 x ∗ = a 2 + a − a ( 质 量 比   a = W 2 W 1 ) {dS\over dx}=0\\ x^*=\sqrt{a^2+a}-a \\(质量比\ a={W_2\over W_1}) dxdS=0x=a2+a a( a=W1W2)
进一步验证知液面高度与杯子重心重合时,重心最低。

模型二建立:

考虑杯底盘质量W3,易知重心S3=0
( x W 1 + W 2 + W 3 ) S = S 1 x W 1 + S 2 W 2 + S 3 W 3 (xW_1+W_2+W_3)S=S_1xW_1+S_2W_2+S_3W_3 (xW1+W2+W3)S=S1xW1+S2W2+S3W3

S ( x ) = x 2 + a 2 ( x + a + b ) ( a = W 2 W 1 , b = W 3 W 1 ) x ∗ = ( a + b ) 2 + a − ( a + b ) S(x)={{x^2+a}\over2(x+a+b)} (a={W_2\over W_1},b={W_3\over W_1}) \\x^*=\sqrt{(a+b)^2+a}-(a+b) S(x)=2(x+a+b)x2+a(a=W1W2,b=W1W3)x=(a+b)2+a (a+b)

得到相同形式的结果:液面与杯子重心重合时的重心最低。有实际数据可证模型一产生的误差可控,简化方式同时合理。

模型推广:
这个所建立的模型同样适用其他形状的杯子,只不过求解过程会变复杂,方法不变。只要杯子为旋转体,重心最低处的条件仍旧成立。


3.经济学 商品效用

效用函数

人们商品消费、服务消费所获得的生理、心理上的满足程度称为效用。

效用函数U(x)表示数量为x的某种商品产生的效用

其导函数表示商品数量增加一个单位时U(x)的增量,称为边际效用

遵循原则:边际效用递减
d U d x > 0 , d 2 U d x 2 < 0 {dU\over dx}>0,{d^2U\over dx^2}<0 dxdU>0,dx2d2U<0
一种商品的典型效用函数表达式
U ( x ) = a x α , a > 0 , 0 < α < 1 U(x)=ax^α,a>0,0<α<1 U(x)=axα,a>0,0<α<1
两种商品的典型效用函数表达式
U ( x , y ) = a x α y β , a > 0 , 0 < α < 1 , 0 < β < 1 U(x,y)=ax^αy^β,a>0,0<α<1,0<β<1 U(x,y)=axαyβ,a>0,0<α<1,0<β<1
对于U(x,y)可引入无差别曲线,效用相同的点的集合
U ( x , y ( x ) ) = a x α y β , a > 0 , 0 < α < 1 , 0 < β < 1 U ( x , y ) = u U(x,y(x))=ax^αy^β, a>0, 0<α<1, 0<β<1\\U(x,y)=u U(x,y(x))=axαyβ,a>0,0<α<1,0<β<1U(x,y)=u

效用最大化模型

假设甲乙两种商品单价分别为p1,p2;消费者花费s;购买数量为x,y。

效用最大模型满足以下条件
m a x U ( x , y ) s . t .   p 1 x + p 2 y = s maxU(x,y)\\s.t. \ p_1x+p_2y=s maxU(x,y)s.t. p1x+p2y=s
模型几何解法
在这里插入图片描述

消费点Q在消费曲线上运动,要使效用最大,必然是切点

数学解法

拉格朗日数乘法求解

可以得到效用最大化原理:当两种商品的边际效用与二者价格之比相同时,效用最大
δ U / δ x δ U / δ y = p 1 p 2 {{δU/δx}\over{δU/δy}}={p_1\over p_2} δU/δyδU/δx=p2p1
推广:n种商品


更多实例冰山运输、影院视角(概率论中变异系数)、易拉罐优化设计(2006年C题)

  • 0
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值