CINTA 作业七

1.如果 H 1 H_1 H1 H 2 H_2 H2 是群 G 的正规子群,证明 H 1 H 2 H_1H_2 H1H2 也是群 G 的正规子群。

证明:

由题,要证 G 是 H 1 H 2 H_1H_2 H1H2 的正规子群,我们要分两步证明:

首先证明 H 1 H 2 H_1H_2 H1H2 是 G 的子群,接着再验证正规子群的性质。证明如下。

我们去取 ∀ h 1 h 2 ∈ H 1 H 2 \forall h_1h_2 \in H_1H_2 h1h2H1H2,有
H 1 H 2 ( h 1 h 2 ) − 1 = H 1 H 2 h 2 − 1 h 1 − 1 = H 1 H 2 h 1 − 1 = H 1 h 1 − 1 H 2 = H 1 H 2 H_1H_2(h_1h_2)^{-1} = H_1H_2h_2^{-1}h_1^{-1} = H_1H_2h_1^{-1} = H_1h_1^{-1}H_2 = H_1H_2 H1H2(h1h2)1=H1H2h21h11=H1H2h11=H1h11H2=H1H2
那么由命题 6.8 我们可以认为 H 1 H 2 H_1H_2 H1H2 是 G 的子群。

接着验证正规子群的属性。

∀ g ∈ G \forall g \in G gG, 有 g H 1 H 2 = H 1 g H 2 = H 1 H 2 g gH_1H_2 = H_1gH_2 = H_1H_2g gH1H2=H1gH2=H1H2g ,证毕。

2.定义映射 ϕ : G → G \phi:G \rightarrow G ϕ:GG : g → g 2 :g \rightarrow g^2 :gg2。请证明 ϕ \phi ϕ 是一种群同态当且仅当 G 是阿贝尔群。

证明:

充分性:

ϕ : g → g 2 \phi:g \rightarrow g^2 ϕgg2 是一个群同态,那么我们会有 ∀ g 1 , g 2 ∈ G \forall g_1,g_2 \in G g1,g2G

ϕ ( g 1 g 2 ) = ϕ ( g 1 ) ϕ ( g 2 ) \phi(g_1g_2) = \phi(g_1)\phi(g_2) ϕ(g1g2)=ϕ(g1)ϕ(g2) ( g 1 g 2 ) 2 = g 1 g 2 g 1 g 2 = g 1 2 g 2 2 (g_1g_2)^2 = g_1g_2g_1g_2 = g_1^2g_2^2 (g1g2)2=g1g2g1g2=g12g22,显然交换律存在。

必要性:

若 G 是一个阿贝尔群,那么对 ∀ g 1 , g 2 ∈ G \forall g_1,g_2 \in G g1,g2G,有 g 1 g 2 = g 2 g 1 g_1g_2 = g_2g_1 g1g2=g2g1

则对 ∀ g 1 , g 2 ∈ G \forall g_1,g_2 \in G g1,g2G,有

ϕ ( g 1 g 2 ) = ( g 1 g 2 ) 2 = g 1 g 2 g 1 g 2 = g 1 g 1 g 2 g 2 = g 1 2 g 2 2 = ϕ ( g 1 ) ϕ ( g 2 ) \phi(g_1g_2) = (g_1g_2)^2 = g_1g_2g_1g_2 = g_1g_1g_2g_2 = g_1^2g_2^2 = \phi(g_1)\phi(g_2) ϕ(g1g2)=(g1g2)2=g1g2g1g2=g1g1g2g2=g12g22=ϕ(g1)ϕ(g2)

那么我们可以得知 ϕ : g → g 2 \phi:g \rightarrow g^2 ϕ:gg2 是一个同态。

证毕。

3.证明:如果群 H 是群 G 上指标为 2 的子群,则 H 是 G 的正规子群。

证明:

从题目中我们可以获得 [G:H] = 2,那么显然 H 的陪集仅有 {H} 和 {G-H} 两个。

g ∈ G 且 g ∉ H , g H = { G − H } , H g = { G − H } g \in G 且 g \notin H, gH = \{G-H\},Hg = \{G-H\} gGg/H,gH={GH},Hg={GH}

显然我们可以得到 gH = Hg。

证毕。

4.证明:如果群 G 是循环群,则商群 G/H 也是循环群。

我们不妨构造一个循环群 = G,H 是 G 的一个正规子群,他们构成了一个商群 G/H。

那么对于 G/H 中的一个元素 gH,我们注意到 g 是 G 的生成元。

∀ g ′ ∈ G , ∃ k ∈ Z \forall g' \in G, \exist k \in Z gG,kZ,使 g ′ = g k g' = g^k g=gk,那么也就有 g ′ H = ( g H ) k = g H g H . . . g H ( k 个 g H ) = g k H g'H = (gH)^k = gHgH...gH(k个gH) = g^kH gH=(gH)k=gHgH...gH(kgH)=gkH

这意味着 gH 可以生成 G 关于 H 的所有陪集,也就是 gH 生成 G/H。

故 G/H 是一个循环群,证毕。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值