CINTA 作业四

1.证明命题6.6

证明:
由于群公理,我们可以得到对于 ∀ a ∈ G , ∃ a − 1 \forall a \in G, \exist a^{-1} aG,a1 使 a a − 1 = a − 1 a = e a a^{-1} = a^{-1} a = e aa1=a1a=e
则对于 b a = c a ba = ca ba=ca,我们在两边同时乘上 a − 1 a^{-1} a1
b a a − 1 = c a a − 1 , 故 b = c b a a^{-1} = c a a^{-1},故 b = c baa1=caa1b=c
同理 a − 1 a b = a − 1 a c , 得 b = c a^{-1} a b= a^{-1} a c,得 b = c a1ab=a1acb=c
证毕。

2.证明命题6.7

证明:
对性质1
g m ∗ g n = g ∗ g ∗ . . . ∗ g ( 总 共 m 个 ) ∗ g ∗ g ∗ . . . ∗ g ( 总 共 n 个 ) = g m + n g^m * g^n = g*g*...*g (总共 m 个) * g*g*...*g (总共 n 个) = g^{m+n} gmgn=gg...g(m)gg...g(n)=gm+n
由结合律,上式显然成立,证毕。

对性质2
由性质1,我们可以得到
( g m ) n = g m ∗ g m ∗ . . . ∗ g m ( 总 共 n 个 g m ) = g m + m + . . . + m = g m n (g^m)^n = g^m * g^m * ... * g^m(总共 n 个 g^m)= g{m+m+...+m} = g^{mn} (gm)n=gmgm...gmngm=gm+m+...+m=gmn
证毕。

对性质3
由命题6.3,我们可以得到 ( g h ) − 1 = h − 1 g − 1 (gh)^{-1} = h^{-1}g^{-1} (gh)1=h1g1
用构造法,我们构造
( g h ) n ∗ ( g h ) − 1 = e (gh)^n * (gh)^{-1} = e (gh)n(gh)1=e
( g h ) n ∗ ( h − 1 g − 1 ) n = e (gh)^n * (h^{-1}g^{-1})^n = e (gh)n(h1g1)n=e
由消去律我们得到 ( g h ) n = ( h − 1 g − 1 ) − n (gh)^n =(h^{-1}g^{-1})^{-n} (gh)n=(h1g1)n
如果 G 是阿贝尔群,同理可证 ( g h ) n = g n h n (gh)^n = g^n h^n (gh)n=gnhn
证毕。

3.证明对任意偶数阶群 G ,都存在 g ∈ G , g ≠ e 且 g 2 = e g \in G, g \neq e 且g^2 = e gG,g=eg2=e

证明:
构造法,我们构造一个偶数阶群 G, ∣ G ∣ = 2 k , k ∈ N , 且 对 ∀ g ∈ G , g ≠ e , 则 g 2 ≠ e , 即 g ≠ g − 1 |G| = 2k, k \in \N, 且对 \forall g \in G, g \not= e, 则 g^2 \not= e,即 g\not= g^{-1} G=2k,kN,gG,g=e,g2=eg=g1
显然,在 G 中 有 e e = e , e − 1 = e ee = e, e^{-1} = e ee=e,e1=e
故对于 {G-e}, |{G-e}| = 2k-1。
由于对 ∀ g ∈ G − e , ∃ g − 1 ≠ g ∈ G − e 使 得 g g − 1 = e \forall g \in {G-e}, \exist g^{-1} \neq g \in {G-e} 使得 gg^{-1} = e gGe,g1=gGe使gg1=e
那么在逆元的唯一性这一性质下,我们可以将{G-e}分成两个集合 A 和 B,
对于 ∀ g ∈ A \forall g \in A gA,我们可以在 B 中找到唯一对应 g − 1 g^{-1} g1 使 g g − 1 = e gg^{-1} = e gg1=e
显然 |A+B| 是一个偶数,这与 |{G-e}| = 2k - 1属于 奇数矛盾。

证毕。

4. 给出命题6.9的完整证明

证明:

充分性易证,略。

对于必要性,只要检验 H 满足所有的群公理即可。

结合律易证,略。

单位元存在:

我们由 ∀ a , a ∈ H \forall a,a \in H a,aH,可以得到 a a − 1 = e ∈ H a a^{-1} = e \in H aa1=eH,单位元存在。

乘法逆元存在:

∀ e , a ∈ H \forall e,a \in H e,aH,可以得到 e a − 1 = a − 1 ∈ H e a^{-1} = a^{-1} \in H ea1=a1H,乘法逆元存在。

最后我们检验封闭性,即确认 ∀ a , b ∈ H , a b ∈ H \forall a,b \in H, ab \in H a,bH,abH

由于乘法逆元存在, ∀ b ∈ H \forall b \in H bH,可以得到 a − 1 ∈ H a^{-1} \in H a1H

那么 ∀ a , b − 1 ∈ H \forall a,b^{-1} \in H a,b1H,可以得到 a b ∈ H a b \in H abH,单位元存在,

意味着 ∀ a , b , b − 1 ∈ H \forall a,b,b^{-1} \in H a,b,b1H a b ∈ H a b \in H abH

证毕。

5.设 G 是群,对任意 n ∈ N , i ∈ [ 0 , n ] , g i ∈ G n \in N, i \in [0,n],g_i \in G nN,i[0,n],giG。证明 g 0 g 1 . . . g n g_0 g_1 ...g_n g0g1...gn 的逆元是 g n − 1 . . . g 1 − 1 g 0 − 1 g_n^{-1}...g_1^{-1}g_0^{-1} gn1...g11g01

证明:

g = g 0 g 1 . . . g n ∈ G g = g_0 g_1 ...g_n \in G g=g0g1...gnG

则显然 ∃ g − 1 ∈ G \exist g^{-1} \in G g1G 使 g g − 1 = e gg^{-1} = e gg1=e

g 0 g 1 . . . g n g − 1 = e g_0 g_1 ...g_n g^{-1} = e g0g1...gng1=e,由消去律我们可以得到 g − 1 = g n − 1 . . . g 1 − 1 g 0 − 1 g^{-1} = g_n^{-1}...g_1^{-1}g_0^{-1} g1=gn1...g11g01

证毕。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
好的,这里是50种不同国家的语言表达“我爱你”: 1. English - I love you 2. Spanish - Te quiero 3. French - Je t'aime 4. German - Ich liebe Dich 5. Italian - Ti amo 6. Portuguese - Eu te amo 7. Russian - Ya lyublyu tebya 8. Chinese (Mandarin) - Wo ai ni 9. Japanese - Aishiteru 10. Korean - Sarang hae 11. Arabic - Ana behibak (to a male) / Ana behibek (to a female) 12. Dutch - Ik hou van je 13. Danish - Jeg elsker dig 14. Swedish - Jag älskar dig 15. Norwegian - Jeg elsker deg 16. Finnish - Minä rakastan sinua 17. Polish - Kocham Cię 18. Czech - Miluji Tě 19. Hungarian - Szeretlek 20. Bulgarian - Obicham te 21. Greek - S'ayapo 22. Turkish - Seni seviyorum 23. Romanian - Te iubesc 24. Croatian - Volim te 25. Serbian - Volim te 26. Slovenian - Ljubim te 27. Slovak - Milujem Ťa 28. Estonian - Ma armastan sind 29. Latvian - Es tevi mīlu 30. Lithuanian - Aš tave myliu 31. Icelandic - Ég elska þig 32. Albanian - Te dua 33. Thai - Phom rak khun (to a male) / Chan rak khun (to a female) 34. Vietnamese - Anh ye^u em (to a female) / Em ye^u anh (to a male) 35. Indonesian - Saya cinta padamu 36. Filipino - Mahal kita 37. Hindi - Main tumse pyar karta hoon 38. Bengali - Ami tomake bhalobashi 39. Urdu - Main tumse muhabbat karta hoon 40. Marathi - Me tujhe pyaar kartaa hoo 41. Punjabi - Main tere pyar da haan 42. Telugu - Nenu ninnu premisthunnanu 43. Tamil - Naan unnai kaadhalikken 44. Malayalam - Njan ninnodenikkoo 45. Kannada - Naanu ninna preetisuttene 46. Gujrati - Hu tane pyar karoo chu 47. Nepali - Ma timilai maya garchu 48. Sinhala - Mama oyata arderyi 49. Burmese - Chit pa de 50. Mongolian - Bi chamd hairtai

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值