Spark17(任务调度机制、Shuffle解析)

任务调度机制

在工厂环境下,Spark集群的部署方式一般为YARN-Cluster模式,之后的内核分析内容中我们默认集群的部署方式为YARN-Cluster模式。

Spark任务提交流程

在这里插入图片描述
下面的时序图清晰地说明了一个Spark应用程序从提交到运行的完整流程
在这里插入图片描述

  • 提交一个Spark应用程序,首先通过Client向ResourceManager请求启动一个Application,同时检查是否有足够的资源满足Application的需求,如果资源条件满足,则准备ApplicationMaster的启动上下文,交给ResourceManager,并循环监控Application状态。
  • 当提交的资源队列中有资源时,ResourceManager会在某个NodeManager上启动ApplicationMaster进程,ApplicationMaster会单独启动Driver后台线程,当Driver启动后,ApplicationMaster会通过本地的RPC连接Driver,并开始向ResourceManager
  • 申请Container资源运行Executor进程(一个Executor对应与一个Container),当ResourceManager返回Container资源,ApplicationMaster则在对应的Container上启动Executor。
    Driver线程主要是初始化SparkContext对象,准备运行所需的上下文,然后一方面保持与ApplicationMaster的RPC连接,通过ApplicationMaster申请资源,另一方面根据用户业务逻辑开始调度任务,将任务下发到已有的空闲Executor上。
  • 当ResourceManager向ApplicationMaster返回Container资源时,ApplicationMaster就尝试在对应的Container上启动Executor进程,Executor进程起来后,会向Driver反向注册,注册成功后保持与Driver的心跳,同时等待Driver分发任务,当分发的任务执行完毕后,将任务状态上报给Driver。
    从上述时序图可知,Client只负责提交Application并监控Application的状态。对于Spark的任务调度主要是集中在两个方面: 资源申请和任务分发,其主要是通过ApplicationMaster、Driver以及Executor之间来完成。

Spark任务调度概述

当Driver起来后,Driver则会根据用户程序逻辑准备任务,并根据Executor资源情况逐步分发任务。在详细阐述任务调度前,首先说明下Spark里的几个概念。一个Spark应用程序包括Job、Stage以及Task三个概念:
Job是以Action方法为界,遇到一个Action方法则触发一个Job;
Stage是Job的子集,以RDD宽依赖(即Shuffle)为界,遇到Shuffle做一次划分;
Task是Stage的子集,以并行度(分区数)来衡量,分区数是多少,则有多少个task。
Spark的任务调度总体来说分两路进行,一路是Stage级的调度,一路是Task级的调度,总体调度流程如下图所示:
在这里插入图片描述
Spark RDD通过其Transactions操作,形成了RDD血缘关系图,即DAG,最后通过Action的调用,触发Job并调度执行。DAGScheduler负责Stage级的调度,主要是将job切分成若干Stages,并将每个Stage打包成TaskSet交给TaskScheduler调度。TaskScheduler负责Task级的调度,将DAGScheduler给过来的TaskSet按照指定的调度策略分发到Executor上执行,调度过程中SchedulerBackend负责提供可用资源,其中SchedulerBackend有多种实现,分别对接不同的资源管理系统。有了上述感性的认识后,下面这张图描述了Spark-On-Yarn模式下在任务调度期间,ApplicationMaster、Driver以及Executor内部模块的交互过程:
在这里插入图片描述
在这里插入图片描述
Driver初始化SparkContext过程中,会分别初始化DAGScheduler、TaskScheduler、SchedulerBackend以及HeartbeatReceiver,并启动SchedulerBackend以及HeartbeatReceiver。SchedulerBackend通过ApplicationMaster申请资源,并不断从TaskScheduler中拿到合适的Task分发到Executor执行。HeartbeatReceiver负责接收Executor的心跳信息,监控Executor的存活状况,并通知到TaskScheduler。

Spark Stage级调度

Spark的任务调度是从DAG切割开始,主要是由DAGScheduler来完成。当遇到一个Action操作后就会触发一个Job的计算,并交给DAGScheduler来提交,下图是涉及到Job提交的相关方法调用流程图。
在这里插入图片描述
Job由最终的RDD和Action方法封装而成,SparkContext将Job交给DAGScheduler提交,它会根据RDD的血缘关系构成的DAG进行切分,将一个Job划分为若干Stages,具体划分策略是,由最终的RDD不断通过依赖回溯判断父依赖是否是宽依赖,即以Shuffle为界,划分Stage,窄依赖的RDD之间被划分到同一个Stage中,可以进行pipeline式的计算,如上图紫色流程部分。划分的Stages分两类,一类叫做ResultStage,为DAG最下游的Stage,由Action方法决定,另一类叫做ShuffleMapStage,为下游Stage准备数据,下面看一个简单的例子WordCount。
在这里插入图片描述
Job由saveAsTextFile触发,该Job由RDD-3和saveAsTextFile方法组成,根据RDD之间的依赖关系从RDD-3开始回溯搜索,直到没有依赖的RDD-0,在回溯搜索过程中,RDD-3依赖RDD-2,并且是宽依赖,所以在RDD-2和RDD-3之间划分Stage,RDD-3被划到最后一个Stage,即ResultStage中,RDD-2依赖RDD-1,RDD-1依赖RDD-0,这些依赖都是窄依赖,所以将RDD-0、RDD-1和RDD-2划分到同一个Stage,即ShuffleMapStage中,实际执行的时候,数据记录会一气呵成地执行RDD-0到RDD-2的转化。不难看出,其本质上是一个深度优先搜索算法。
一个Stage是否被提交,需要判断它的父Stage是否执行,只有在父Stage执行完毕才能提交当前Stage,如果一个Stage没有父Stage,那么从该Stage开始提交。Stage提交时会将Task信息(分区信息以及方法等)序列化并被打包成TaskSet交给TaskScheduler,一个Partition对应一个Task,另一方面TaskScheduler会监控Stage的运行状态,只有Executor丢失或者Task由于Fetch失败才需要重新提交失败的Stage以调度运行失败的任务,其他类型的Task失败会在TaskScheduler的调度过程中重试。
相对来说DAGScheduler做的事情较为简单,仅仅是在Stage层面上划分DAG,提交Stage并监控相关状态信息。TaskScheduler则相对较为复杂,下面详细阐述其细节。

Spark Task级调度

Spark Task的调度是由TaskScheduler来完成,由前文可知,DAGScheduler将Stage打包到TaskSet交给TaskScheduler,TaskScheduler会将TaskSet封装为TaskSetManager加入到调度队列中,TaskSetManager结构如下图所示。
在这里插入图片描述
TaskSetManager负责监控管理同一个Stage中的Tasks,TaskScheduler就是以TaskSetManager为单元来调度任务。
在这里插入图片描述
前面也提到,TaskScheduler初始化后会启动SchedulerBackend,它负责跟外界打交道,接收Executor的注册信息,并维护Executor的状态,所以说SchedulerBackend是管“粮食”的,同时它在启动后会定期地去“询问”TaskScheduler有没有任务要运行,也就是说,它会定期地“问”TaskScheduler“我有这么余量,你要不要啊”,TaskScheduler在SchedulerBackend“问”它的时候,会从调度队列中按照指定的调度策略选择TaskSetManager去调度运行,大致方法调用流程如下图所示:
在这里插入图片描述
将TaskSetManager加入rootPool调度池中之后,调用SchedulerBackend的riviveOffers方法给driverEndpoint发送ReviveOffer消息;driverEndpoint收到ReviveOffer消息后调用makeOffers方法,过滤出活跃状态的Executor(这些Executor都是任务启动时反向注册到Driver的Executor),然后将Executor封装成WorkerOffer对象;准备好计算资源(WorkerOffer)后,taskScheduler基于这些资源调用resourceOffer在Executor上分配task。

调度策略
前面讲到,TaskScheduler会先把DAGScheduler给过来的TaskSet封装成TaskSetManager扔到任务队列里,然后再从任务队列里按照一定的规则把它们取出来在SchedulerBackend给过来的Executor上运行。这个调度过程实际上还是比较粗粒度的,是面向TaskSetManager的。
TaskScheduler是以树的方式来管理任务队列,树中的节点类型为Schdulable,叶子节点为TaskSetManager,非叶子节点为Pool,下图是它们之间的继承关系。
在这里插入图片描述
TaskScheduler支持两种调度策略,一种是FIFO,也是默认的调度策略,另一种是FAIR。在TaskScheduler初始化过程中会实例化rootPool,表示树的根节点,是Pool类型。

  1. FIFO调度策略
    如果是采用FIFO调度策略,则直接简单地将TaskSetManager按照先来先到的方式入队,出队时直接拿出最先进队的TaskSetManager,其树结构如下图所示,TaskSetManager保存在一个FIFO队列中。
    在这里插入图片描述
  2. FAIR调度策略
    FAIR调度策略的树结构如下图所示:
    在这里插入图片描述
    FAIR模式中有一个rootPool和多个子Pool,各个子Pool中存储着所有待分配的TaskSetMagager。
    在FAIR模式中,需要先对子Pool进行排序,再对子Pool里面的TaskSetMagager进行排序,因为Pool和TaskSetMagager都继承了Schedulable特质,因此使用相同的排序算法。
    排序过程的比较是基于Fair-share来比较的,每个要排序的对象包含三个属性: runningTasks值(正在运行的Task数)、minShare值、weight值,比较时会综合考量runningTasks值,minShare值以及weight值。
    注意,minShare、weight的值均在公平调度配置文件fairscheduler.xml中被指定,调度池在构建阶段会读取此文件的相关配置。
  1. 如果A对象的runningTasks大于它的minShare,B对象的runningTasks小于它的minShare,那么B排在A前面;(runningTasks比minShare小的先执行)
  2. 如果A、B对象的runningTasks都小于它们的minShare,那么就比较runningTasks与minShare的比值(minShare使用率),谁小谁排前面;(minShare使用率低的先执行)
  3. 如果A、B对象的runningTasks都大于它们的minShare,那么就比较runningTasks与weight的比值(权重使用率),谁小谁排前面。(权重使用率低的先执行)
  4. 如果上述比较均相等,则比较名字。
    整体上来说就是通过minShare和weight这两个参数控制比较过程,可以做到让minShare使用率和权重使用率少(实际运行task比例较少)的先运行。
    FAIR模式排序完成后,所有的TaskSetManager被放入一个ArrayBuffer里,之后依次被取出并发送给Executor执行。
    从调度队列中拿到TaskSetManager后,由于TaskSetManager封装了一个Stage的所有Task,并负责管理调度这些Task,那么接下来的工作就是TaskSetManager按照一定的规则一个个取出Task给TaskScheduler,TaskScheduler再交给SchedulerBackend去发到Executor上执行。

本地化调度
DAGScheduler切割Job,划分Stage, 通过调用submitStage来提交一个Stage对应的tasks,submitStage会调用submitMissingTasks,submitMissingTasks 确定每个需要计算的 task 的preferredLocations,通过调用getPreferrdeLocations()得到partition 的优先位置,由于一个partition对应一个task,此partition的优先位置就是task的优先位置,对于要提交到TaskScheduler的TaskSet中的每一个task,该task优先位置与其对应的partition对应的优先位置一致。
从调度队列中拿到TaskSetManager后,那么接下来的工作就是TaskSetManager按照一定的规则一个个取出task给TaskScheduler,TaskScheduler再交给SchedulerBackend去发到Executor上执行。前面也提到,TaskSetManager封装了一个Stage的所有task,并负责管理调度这些task。
根据每个task的优先位置,确定task的Locality级别,Locality一共有五种,优先级由高到低顺序:
在这里插入图片描述
在调度执行时,Spark调度总是会尽量让每个task以最高的本地性级别来启动,当一个task以X本地性级别启动,但是该本地性级别对应的所有节点都没有空闲资源而启动失败,此时并不会马上降低本地性级别启动而是在某个时间长度内再次以X本地性级别来启动该task,若超过限时时间则降级启动,去尝试下一个本地性级别,依次类推。
可以通过调大每个类别的最大容忍延迟时间,在等待阶段对应的Executor可能就会有相应的资源去执行此task,这就在在一定程度上提到了运行性能。

失败重试与黑名单机制
除了选择合适的Task调度运行外,还需要监控Task的执行状态,前面也提到,与外部打交道的是SchedulerBackend,Task被提交到Executor启动执行后,Executor会将执行状态上报给SchedulerBackend,SchedulerBackend则告诉TaskScheduler,TaskScheduler找到该Task对应的TaskSetManager,并通知到该TaskSetManager,这样TaskSetManager就知道Task的失败与成功状态,对于失败的Task,会记录它失败的次数,如果失败次数还没有超过最大重试次数,那么就把它放回待调度的Task池子中,否则整个Application失败。
在记录Task失败次数过程中,会记录它上一次失败所在的Executor Id和Host,这样下次再调度这个Task时,会使用黑名单机制,避免它被调度到上一次失败的节点上,起到一定的容错作用。黑名单记录Task上一次失败所在的Executor Id和Host,以及其对应的“拉黑”时间,“拉黑”时间是指这段时间内不要再往这个节点上调度这个Task了。

Spark Shuffle解析

ShuffleMapStage与ResultStage

在这里插入图片描述
在划分stage时,最后一个stage称为finalStage,它本质上是一个ResultStage对象,前面的所有stage被称为ShuffleMapStage。
ShuffleMapStage的结束伴随着shuffle文件的写磁盘。
ResultStage基本上对应代码中的action算子,即将一个函数应用在RDD的各个partition的数据集上,意味着一个job的运行结束。

Shuffle中的任务个数

我们知道,Spark Shuffle分为map阶段和reduce阶段,或者称之为ShuffleRead阶段和ShuffleWrite阶段,那么对于一次Shuffle,map过程和reduce过程都会由若干个task来执行,那么map task和reduce task的数量是如何确定的呢?
假设Spark任务从HDFS中读取数据,那么初始RDD分区个数由该文件的split个数决定,也就是一个split对应生成的RDD的一个partition,我们假设初始partition个数为N。
初始RDD经过一系列算子计算后(假设没有执行repartition和coalesce算子进行重分区,则分区个数不变,仍为N,如果经过重分区算子,那么分区个数变为M),我们假设分区个数不变,当执行到Shuffle操作时,map端的task个数和partition个数一致,即map task为N个。
reduce端的stage默认取spark.default.parallelism这个配置项的值作为分区数,如果没有配置,则以map端的最后一个RDD的分区数作为其分区数(也就是N),那么分区数就决定了reduce端的task的个数。

reduce端数据的读取

根据stage的划分我们知道,map端task和reduce端task不在相同的stage中,map task位于ShuffleMapStage,reduce task位于ResultStage,map task会先执行,那么后执行的reduce task如何知道从哪里去拉取map task落盘后的数据呢?
reduce端的数据拉取过程如下:

  1. map task 执行完毕后会将计算状态以及磁盘小文件位置等信息封装到MapStatus对象中,然后由本进程中的MapOutPutTrackerWorker对象将mapStatus对象发送给Driver进程的MapOutPutTrackerMaster对象;
  2. 在reduce task开始执行之前会先让本进程中的MapOutputTrackerWorker向Driver进程中的MapoutPutTrakcerMaster发动请求,请求磁盘小文件位置信息;
  3. 当所有的Map task执行完毕后,Driver进程中的MapOutPutTrackerMaster就掌握了所有的磁盘小文件的位置信息。此时MapOutPutTrackerMaster会告诉MapOutPutTrackerWorker磁盘小文件的位置信息;
  4. 完成之前的操作之后,由BlockTransforService去Executor0所在的节点拉数据,默认会启动五个子线程。每次拉取的数据量不能超过48M(reduce task每次最多拉取48M数据,将拉来的数据存储到Executor内存的20%内存中)。

HashShuffle解析

以下的讨论都假设每个Executor有1个CPU core。

  1. 未经优化的HashShuffleManager
    shuffle write阶段,主要就是在一个stage结束计算之后,为了下一个stage可以执行shuffle类的算子(比如reduceByKey),而将每个task处理的数据按key进行“划分”。所谓“划分”,就是对相同的key执行hash算法,从而将相同key都写入同一个磁盘文件中,而每一个磁盘文件都只属于下游stage的一个task。在将数据写入磁盘之前,会先将数据写入内存缓冲中,当内存缓冲填满之后,才会溢写到磁盘文件中去。
    下一个stage的task有多少个,当前stage的每个task就要创建多少份磁盘文件。比如下一个stage总共有100个task,那么当前stage的每个task都要创建100份磁盘文件。如果当前stage有50个task,总共有10个Executor,每个Executor执行5个task,那么每个Executor上总共就要创建500个磁盘文件,所有Executor上会创建5000个磁盘文件。由此可见,未经优化的shuffle write操作所产生的磁盘文件的数量是极其惊人的。
    shuffle read阶段,通常就是一个stage刚开始时要做的事情。此时该stage的每一个task就需要将上一个stage的计算结果中的所有相同key,从各个节点上通过网络都拉取到自己所在的节点上,然后进行key的聚合或连接等操作。由于shuffle write的过程中,map task给下游stage的每个reduce task都创建了一个磁盘文件,因此shuffle read的过程中,每个reduce task只要从上游stage的所有map task所在节点上,拉取属于自己的那一个磁盘文件即可。
    shuffle read的拉取过程是一边拉取一边进行聚合的。每个shuffle read task都会有一个自己的buffer缓冲,每次都只能拉取与buffer缓冲相同大小的数据,然后通过内存中的一个Map进行聚合等操作。聚合完一批数据后,再拉取下一批数据,并放到buffer缓冲中进行聚合操作。以此类推,直到最后将所有数据到拉取完,并得到最终的结果。
    未优化的HashShuffleManager工作原理如图1-7所示:
    在这里插入图片描述
    优化后的HashShuffleManager
    为了优化HashShuffleManager我们可以设置一个参数,spark.shuffle. consolidateFiles,该参数默认值为false,将其设置为true即可开启优化机制,通常来说,如果我们使用HashShuffleManager,那么都建议开启这个选项。
    开启consolidate机制之后,在shuffle write过程中,task就不是为下游stage的每个task创建一个磁盘文件了,此时会出现shuffleFileGroup的概念,每个shuffleFileGroup会对应一批磁盘文件,磁盘文件的数量与下游stage的task数量是相同的。一个Executor上有多少个CPU core,就可以并行执行多少个task。而第一批并行执行的每个task都会创建一个shuffleFileGroup,并将数据写入对应的磁盘文件内。
    当Executor的CPU core执行完一批task,接着执行下一批task时,下一批task就会复用之前已有的shuffleFileGroup,包括其中的磁盘文件,也就是说,此时task会将数据写入已有的磁盘文件中,而不会写入新的磁盘文件中。因此,consolidate机制允许不同的task复用同一批磁盘文件,这样就可以有效将多个task的磁盘文件进行一定程度上的合并,从而大幅度减少磁盘文件的数量,进而提升shuffle write的性能。
    假设第二个stage有100个task,第一个stage有50个task,总共还是有10个Executor(Executor CPU个数为1),每个Executor执行5个task。那么原本使用未经优化的HashShuffleManager时,每个Executor会产生500个磁盘文件,所有Executor会产生5000个磁盘文件的。但是此时经过优化之后,每个Executor创建的磁盘文件的数量的计算公式为:CPU core的数量 * 下一个stage的task数量,也就是说,每个Executor此时只会创建100个磁盘文件,所有Executor只会创建1000个磁盘文件。
    优化后的HashShuffleManager工作原理如图1-8所示:
    在这里插入图片描述
    SortShuffle解析
    SortShuffleManager的运行机制主要分成两种,一种是普通运行机制,另一种是bypass运行机制。当shuffle read task的数量小于等于spark.shuffle.sort. bypassMergeThreshold参数的值时(默认为200),就会启用bypass机制。
  2. 普通运行机制
    在该模式下,数据会先写入一个内存数据结构中,此时根据不同的shuffle算子,可能选用不同的数据结构。如果是reduceByKey这种聚合类的shuffle算子,那么会选用Map数据结构,一边通过Map进行聚合,一边写入内存;如果是join这种普通的shuffle算子,那么会选用Array数据结构,直接写入内存。接着,每写一条数据进入内存数据结构之后,就会判断一下,是否达到了某个临界阈值。如果达到临界阈值的话,那么就会尝试将内存数据结构中的数据溢写到磁盘,然后清空内存数据结构。
    在溢写到磁盘文件之前,会先根据key对内存数据结构中已有的数据进行排序。排序过后,会分批将数据写入磁盘文件。默认的batch数量是10000条,也就是说,排序好的数据,会以每批1万条数据的形式分批写入磁盘文件。写入磁盘文件是通过Java的BufferedOutputStream实现的。BufferedOutputStream是Java的缓冲输出流,首先会将数据缓冲在内存中,当内存缓冲满溢之后再一次写入磁盘文件中,这样可以减少磁盘IO次数,提升性能。
    一个task将所有数据写入内存数据结构的过程中,会发生多次磁盘溢写操作,也就会产生多个临时文件。最后会将之前所有的临时磁盘文件都进行合并,这就是merge过程,此时会将之前所有临时磁盘文件中的数据读取出来,然后依次写入最终的磁盘文件之中。此外,由于一个task就只对应一个磁盘文件,也就意味着该task为下游stage的task准备的数据都在这一个文件中,因此还会单独写一份索引文件,其中标识了下游各个task的数据在文件中的start offset与end offset。
    SortShuffleManager由于有一个磁盘文件merge的过程,因此大大减少了文件数量。比如第一个stage有50个task,总共有10个Executor,每个Executor执行5个task,而第二个stage有100个task。由于每个task最终只有一个磁盘文件,因此此时每个Executor上只有5个磁盘文件,所有Executor只有50个磁盘文件。
    普通运行机制的SortShuffleManager工作原理如图1-9所示:
    在这里插入图片描述
  3. bypass运行机制
    bypass运行机制的触发条件如下:
     shuffle map task数量小于spark.shuffle.sort.bypassMergeThreshold参数的值。
     不是聚合类的shuffle算子。
    此时,每个task会为每个下游task都创建一个临时磁盘文件,并将数据按key进行hash然后根据key的hash值,将key写入对应的磁盘文件之中。当然,写入磁盘文件时也是先写入内存缓冲,缓冲写满之后再溢写到磁盘文件的。最后,同样会将所有临时磁盘文件都合并成一个磁盘文件,并创建一个单独的索引文件。
    该过程的磁盘写机制其实跟未经优化的HashShuffleManager是一模一样的,因为都要创建数量惊人的磁盘文件,只是在最后会做一个磁盘文件的合并而已。因此少量的最终磁盘文件,也让该机制相对未经优化的HashShuffleManager来说,shuffle read的性能会更好。
    而该机制与普通SortShuffleManager运行机制的不同在于:第一,磁盘写机制不同;第二,不会进行排序。也就是说,启用该机制的最大好处在于,shuffle write过程中,不需要进行数据的排序操作,也就节省掉了这部分的性能开销。
    bypass运行机制的SortShuffleManager工作原理如图1-10所示:
    在这里插入图片描述
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值