Spark 的Shuffle过程详解(待续...)

本文详细介绍了Spark中的Shuffle过程,包括其作用、运行时机、两种主要的Shuffle管理模式——HashShuffle和SortShuffle及其优化机制。重点讨论了Shuffle过程中磁盘小文件过多的问题及其影响,以及如何通过参数调优来提升性能。此外,还对比了Spark与MR中shuffle的不同之处,探讨了内存管理和Shuffle相关参数的调整建议。
摘要由CSDN通过智能技术生成

1.Shuffle的作用是什么?

Shuffle的中文解释为“洗牌操作”,可以理解成将集群中所有节点上的数据进行重新整合分类的过程。其思想来源于hadoop的mapReduce,Shuffle是连接map阶段和reduce阶段的桥梁。由于分布式计算中,每个阶段的各个计算节点只处理任务的一部分数据,若下一个阶段需要依赖前面阶段的所有计算结果时,则需要对前面阶段的所有计算结果进行重新整合和分类,这就需要经历shuffle过程。
在spark中,RDD之间的关系包含窄依赖和宽依赖,其中宽依赖涉及shuffle操作。因此在spark程序的每个job中,都是根据是否有shuffle操作进行阶段(stage)划分,每个stage都是一系列的RDD map操作。

2. Spark中shuffle的运行时机

shuffle过程只有在stage与stage之间才会运行,前一个stage可以看作是MR的MapTask;后面的stage可以看作是ReduceTask,而且stage的切分规则是根据RDD的宽窄依赖关系切分的,那么下面列出一些能够产生shuffle的算子

  • 去重
def distinct()
def distinct(numPartitions: Int)
  • 集合
def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)]
def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)]
def groupBy[K](f: T => K, p: Partitioner):RDD[(K, Iterable[V])]
def groupByKey(partitioner: Partitioner):RDD[(K, Iterable[V])]
def combineByKey[C](createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C): RDD[(K, C)]
  • 排序
def sortByKey(ascending: Boolean = true, numPartitions: Int <
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值