Pytorch:显卡驱动版本、Pytorch版本的关系

相关阅读

Pytorch基础https://blog.csdn.net/weixin_45791458/category_12457644.html?spm=1001.2014.3001.5482


        显卡驱动程序一般是显卡自带的,可以在终端中使用nvidia-smi命令查看,如下图所示。

图1 查看驱动程序的版本

        图1显示,本机的驱动程序版本为472.19,支持的最新CUDA Toolkit版本为11.4,更详细的驱动程序和CUDA Toolkit的对应关系如图2所示。

图2 驱动程序和CUDA Toolkit的对应关系

        CUDA拥有两类API,一种是驱动API(Driver API),一类是运行时API(Runtime API),驱动API(Driver API)在驱动程序安装后就已可用,而运行时API(Runtime API)则需要额外安装CUDA Toolkit才可用,它是对驱动API的封装。

        如果想更新显卡驱动程序,首先可以在英伟达官网进行下载。另外,在安装CUDA Toolkit时,也有选项允许下载驱动程序,但此时安装的驱动程序主要是为了开发和测试用途设计的,不适合在生产环境中与Tesla GPU搭配使用。

驱动程序下载https://www.nvidia.cn/drivers/

CUDA Toolkit下载https://developer.nvidia.com/cuda-toolkit-archive

        使用nvcc -v或nvcc --version命令可以检测CUDA Toolkit的版本,暗示了CUDA Toolkit的安装情况,nvcc是CUDA Toolkit中的cuda编译器。 

        对于目前的Pytorch来说,无需提前下载CUDA Toolkit便可以直接安装使用,因为会安装时会下载一套专门供Pytorch使用的运行时API。

安装较新版本的Pytorch

conda install pytorch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 pytorch-cuda=11.8 -c pytorch -c nvidia
pip install torch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 --index-url https://download.pytorch.org/whl/cu118

        无论使用哪条命令,都会同时下载依赖项cuda runtime包,里面包含了Pytorch需要的运行时API。

        可以在下面的路径(或类似)中找到运行时API。

/usr/local/lib/python3.10/dist-packages/nvidia/cuda_runtime/lib/libcudart.so.11.0

安装较老版本的Pytorch

conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=10.2 -c pytorch
pip install torch==1.12.1+cu102 torchvision==0.13.1+cu102 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu102

        其中如果使用conda安装,会同时下载cudatoolkit包(仅供Pytorch使用);如果使用pip安装,会在Pytorch包的Lib中自带运行时API,如下所示。

/usr/local/lib/python3.10/dist-packages/torch/lib/libcudart-a7b20f20.so.11.0

注意事项 

        需要注意的是,Pytorch附带安装的运行时API版本,应低于驱动所限制的CUDA Toolkit版本(因为运行时API是基于驱动API的),例如对于图1所示的驱动版本,CUDA 11.4版本以上的Pytorch就可能会出现问题。

### PyTorch显卡驱动的兼容性及配置方法 为了确保PyTorch能够充分利用GPU进行计算,需要正确配置显卡驱动、CUDA以及cuDNN等依赖项。以下是关于PyTorch显卡驱动兼容性的详细介绍。 #### 一、显卡驱动版本的要求 在Windows系统下,可以通过快捷键`Win+R`调出运行对话框,输入`cmd`进入命令提示符界面,在其中执行`nvidia-smi`命令来查看当前系统的显卡驱动版本[^1]。对于Linux用户,则可以在终端中直接运行该命令获取相同的信息。需要注意的是,不同版本的CUDA工具包对应着特定范围内的最低支持显卡驱动版本,具体可参照NVIDIA官方文档中的表格数据[^3]。 #### 二、验证PyTorch是否能访问到GPU资源 当完成所有必要的软件栈部署之后,可通过Python脚本来测试PyTorch能否识别并利用本地可用的GPU设备。一段简单的检测代码如下所示: ```python import torch print(torch.cuda.is_available()) ``` 上述代码片段会返回布尔值True或者False表示是否有任何CUDA-capable device被发现并且处于就绪状态以便供PyTorch使用[^2]。 #### 三、安过程注意事项 针对某些特殊操作系统比如Deepin Linux发行版,在其特有的图形化环境中操作时可能会遇到额外挑战。例如,在处理可能存在的开源图形子系统冲突(Nouveau)方面就需要特别小心对待;另外还有几个关键选项值得留意——DKMS(Dynamic Kernel Module Support),它使得即使更换了核心也不必重新编译模块就能自动加载最新的适配器固件;至于要不要加入对老旧架构的支持(即所谓的'32-bit compatibility libraries')则取决于目标应用场景的实际需求情况而定[^4]。 最后值得一提的是,尽管理论上只要满足基本条件就可以顺利运作起来,但由于实际开发环境千差万别再加上第三方库之间可能存在潜在交互影响等因素考虑进去的话,建议始终遵循官方推荐的最佳实践路径来进行整个流程设置工作[^5]。 ### 总结 综上所述,要实现PyTorch同硬件层面的良好协作效果不仅涉及到基础层面上诸如确认现有驱动级别是否足够高等简单动作外还需要深入理解各个组成部分间相互作用关系进而采取针对性措施加以解决可能出现的各种状况直至最终达成预期目的为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

日晨难再

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值