7.5图像缩放

实验原理

在OpenCV(Open Source Computer Vision Library)中,resize函数用于调整图像的尺寸。这个函数非常有用,尤其是在进行图像预处理时,比如在图像识别或机器学习任务中需要统一输入图像的大小。

下面是基于C++的resize函数的详细说明。

函数原型

void resize(
    InputArray src, 
    OutputArray dst, 
    Size dsize, 
    double fx = 0, 
    double fy = 0, 
    int interpolation = INTER_LINEAR
);

参数说明
src: 输入图像。可以是8位到32位的单通道或多通道图像。
dst: 输出图像。图像类型与src相同,大小由dsize参数指定。
dsize: 目标图像的大小(宽度,高度)。如果设为Size(-1,-1)并且fx和fy均不为零,则会根据缩放因子计算出目标图像的尺寸。
fx: 水平方向上的缩放因子。如果设为0,则默认值为dsize.width/src.cols。
fy: 垂直方向上的缩放因子。如果设为0,则默认值为dsize.height/src.rows。
interpolation: 插值方法。不同的插值方法适用于不同的场景:
INTER_NEAREST – 最近邻插值。
INTER_LINEAR – 双线性插值(默认选项)。
INTER_CUBIC – 4x4像素邻域的双三次插值。
INTER_AREA – 使用像素区域关系进行重采样。当图像缩小的时候使用此选项比其他选项更好。
INTER_LANCZOS4 – 8x8像素邻域的Lanczos插值。

插值方法
•最近邻插值(INTER_NEAREST):选择最近的像素值作为新的像素值,适合于缩小时保持块状效果。
•双线性插值(INTER_LINEAR):使用周围的四个像素进行插值,适用于一般情况下的图像缩放。
•双三次插值(INTER_CUBIC):使用更大的像素范围进行插值,适用于高质量的缩放,但计算成本更高。
•基于像素面积关系的重采样(INTER_AREA):适用于缩小图像时,能够更好地保留图像质量。
•Lanczos插值(INTER_LANCZOS4):使用更多的像素进行插值,适用于高质量的缩放,但计算开销最大。

示例代码1

下面是一个使用OpenCV C++实现图像缩放的示例代码:

#include "pch.h"
#include <iostream>
#include <opencv2/opencv.hpp>

using namespace std;
using namespace cv;

void resizeImage(const Mat &src, Mat &dst, Size dsize, InterpolationFlags interpolation) 
{
	// 调整图像大小
	resize(src, dst, dsize, 0, 0, interpolation);
}

int main(int argc, char** argv) 
{
	//if (argc != 2) {
	//	cout << "Usage: ./ResizeImage <Image Path>" << endl;
	//	return -1;
	//}

	// 加载图像
	Mat img = imread("00.jpeg");
	if (!img.data)
	{
		cout << "Error opening image" << endl;
		return -1;
	}

	// 定义目标大小
	Size dsize(400, 400);  // 目标宽度和高度

	// 初始化输出矩阵
	Mat resized;

	// 使用双线性插值方法调整图像大小
	resizeImage(img, resized, dsize, INTER_LINEAR);

	// 显示结果
	namedWindow("Original Image", WINDOW_NORMAL);
	imshow("Original Image", img);
	
	namedWindow("Resized Image", WINDOW_NORMAL);
	imshow("Resized Image", resized);

	waitKey(0);
	destroyAllWindows();

	return 0;
}

代码解释
1. 加载图像:使用 imread 函数加载图像。
2. 定义目标大小:设置新的图像宽度和高度。
3. 调整图像大小:使用 resize 函数调整图像大小,可以选择不同的插值方法。
4. 显示结果:使用 imshow 函数显示原始图像和调整大小后的图像。

注意事项
•插值方法的选择:不同的插值方法适用于不同的场景。一般来说,双线性插值是默认选择,适用于大多数情况。
 在调整图像大小时,不同的插值方法会对输出图像的质量产生影响。
例如,
当放大图像时,双三次插值(INTER_CUBIC)通常会产生更高质量的图像,但计算量较大;
而当缩小图像时,像素区域关系(INTER_AREA)通常是更好的选择。
•边界处理:在调整图像大小时,边界像素可能会受到插值方法的影响。确保选择的插值方法能够满足你的需求。
•性能考虑:对于非常大的图像,调整大小可能会消耗较多的计算资源。可以考虑在调整大小之前先进行必要的预处理,以提高效率。当改变图像尺寸时,需要注意内存管理,确保不会因为生成较大的图像而导致内存不足的问题。


通过这个示例,你应该能够理解如何在OpenCV中使用C++实现图像的缩放功能。

运行结果1

实验代码2

 
#include "pch.h"
#include<iostream>
#include<opencv2/opencv.hpp>
#include<opencv2/imgproc/imgproc.hpp>

//#pragma comment(lib, "opencv_world450d.lib")  //引用引入库 

using namespace std;
using namespace cv;

int main()
{
	// 读取图片
	Mat srcImage = imread("djy.jpg");

	if (!srcImage.data)   //Check for invalid input
	{
		cout << "Could not open or find the image" << endl;
		return -1;
	}

	Mat dstImage1, dstImage2;
	Mat tempImage = srcImage;
	// 显示图片 
	imshow("原图", srcImage);

	// 图片的缩小
	resize(tempImage, dstImage1, Size(tempImage.cols / 2, tempImage.rows / 2), 0, 0, INTER_NEAREST);
	// 图片的放大
	resize(tempImage, dstImage2, Size(tempImage.cols * 2, tempImage.rows * 2), 0, 0, INTER_NEAREST);

	imshow("缩小图", dstImage1);
	imshow("放大图", dstImage2);

	waitKey();
	return 0;
}

运行结果2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值