本文所示教程针对于windows系统和pip安装方法,其他系统的安装可以参考Tensorflow官网:https://www.tensorflow.org/install。
一、使用Pip在Windows系统安装TensorFlow如下:
系统要求
- Python 3.6–3.9
- 若要支持 Python 3.9,需要使用 TensorFlow 2.5 或更高版本。
- 若要支持 Python 3.8,需要使用 TensorFlow 2.2 或更高版本。
- pip 19.0 或更高版本(需要
manylinux2010
支持) - Ubuntu 16.04 或更高版本(64 位)
- macOS 10.12.6 (Sierra) 或更高版本(64 位)(不支持 GPU)
- macOS 要求使用 pip 20.3 或更高版本
- Windows 7 或更高版本(64 位)
- GPU 支持需要使用支持 CUDA® 的卡(适用于 Ubuntu 和 Windows)
- 必须使用最新版本的
pip
,才能安装 TensorFlow 2。
1. 在系统上安装Python开发环境
建议安装Pycharm和Python3.6以上版本,将Pycharm和Python路径放到同一文件夹中,方便后续配置各种库环境。具体Python和Pycharm安装教程,详见Download Python | Python.org,具体教程可参考https://blog.csdn.net/m0_46738467/article/details/113769254,博主的教程非常细致。
2. 调出终端窗口
终端窗口有哪些:
1. cmd 窗口 --- 系统内置;2. powershell 窗口 --- 系统内置;3. Git --- 安装Git才有...
如何打开终端窗口:
Windows 系统快速打开终端的三种方式:
1. 打开cmd:
windows + R,打开运行窗口,输入cmd,回车(推荐)
文件夹窗口,地址栏位置,输入 cmd ,回车
2. 打开 powershell
文件夹窗口,地址栏位置,(文件资源管理器)输入 powershell ,回车
在文件夹空白处,按住 shift 不放,鼠标右键,选择“在此处打开powershell窗口”
3. 打开 Git
在文件夹空白处,鼠标右键,选择 “Git Bash Here”
3. 创建虚拟环境(针对Windows系统!)
以cmd为例,创建一个新的虚拟环境,方法是选择 Python 解释器并创建一个 .\venv
目录来存放它,将以下代码复制到cmd终端窗口:
python -m venv --system-site-packages .\venv
激活虚拟环境:
.\venv\Scripts\activate
在不影响主机系统设置的情况下,在虚拟环境中安装软件包。首先升级 pip
:
pip install --upgrade pip
pip list # show packages installed within the virtual environment
之后退出虚拟环境:
deactivate # don't exit until you're done using TensorFlow
4.安装 TensorFlow pip 软件包
在虚拟环境中安装:(复制以下命令到cmd窗口中)
pip install --upgrade tensorflow
在系统中安装:(复制以下命令到cmd窗口中)
pip3 install --user --upgrade tensorflow # install in $HOME
验证安装效果,复制以下代码到终端:
虚拟环境:
python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))"
系统安装:
python3 -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000, 1000])))"
如果系统返回了张量,如下图所示,则意味着安装成功
二、在Pycharm中验证是否成果安装TensorFlow
新建文件夹,输入以下代码:
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
hello = tf.constant('Hello, TensorFlow!')
sess = tf.compat.v1.Session()
print(sess.run(hello))
如果输出结果为:
则证明已成功安装Tensorflow。
安装Tensorflow还有一些其他的容器,比如利用Docker等。祝大家安装顺利,总体来说Tensorflow安装比Pytorch顺利了很多,前期一定要把Pycharm和Python的路径以及版本一次性安装设定好,会为以后的环境配置节省很多工作。