Windows系统安装Tensorflow教程及测试是否安装成功代码

本文提供了一篇关于在Windows系统上使用pip安装TensorFlow的详细教程,包括系统要求、安装Python开发环境、创建和激活虚拟环境、升级及安装TensorFlow,以及验证安装成功的步骤。还提到了PyCharm中的验证方法和TensorFlow与其他系统的安装选项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文所示教程针对于windows系统和pip安装方法,其他系统的安装可以参考Tensorflow官网:https://www.tensorflow.org/install

一、使用Pip在Windows系统安装TensorFlow如下:

系统要求

  • Python 3.6–3.9
    • 若要支持 Python 3.9,需要使用 TensorFlow 2.5 或更高版本。
    • 若要支持 Python 3.8,需要使用 TensorFlow 2.2 或更高版本。
  • pip 19.0 或更高版本(需要 manylinux2010 支持)
  • Ubuntu 16.04 或更高版本(64 位)
  • macOS 10.12.6 (Sierra) 或更高版本(64 位)(不支持 GPU)
    • macOS 要求使用 pip 20.3 或更高版本
  • Windows 7 或更高版本(64 位)
  • GPU 支持需要使用支持 CUDA® 的卡(适用于 Ubuntu 和 Windows)
  • 必须使用最新版本的 pip,才能安装 TensorFlow 2。

1. 在系统上安装Python开发环境

建议安装Pycharm和Python3.6以上版本,将Pycharm和Python路径放到同一文件夹中,方便后续配置各种库环境。具体Python和Pycharm安装教程,详见Download Python | Python.org,具体教程可参考https://blog.csdn.net/m0_46738467/article/details/113769254,博主的教程非常细致。

2. 调出终端窗口

终端窗口有哪些:

1. cmd 窗口 --- 系统内置;2. powershell 窗口 --- 系统内置;3. Git --- 安装Git才有...

如何打开终端窗口:

Windows 系统快速打开终端的三种方式:

1. 打开cmd:                  

windows + R,打开运行窗口,输入cmd,回车(推荐)

文件夹窗口,地址栏位置,输入 cmd ,回车

 2. 打开 powershell

文件夹窗口,地址栏位置,(文件资源管理器)输入 powershell ,回车

在文件夹空白处,按住 shift 不放,鼠标右键,选择“在此处打开powershell窗口”

3. 打开 Git

在文件夹空白处,鼠标右键,选择 “Git Bash Here”

3. 创建虚拟环境(针对Windows系统!)

以cmd为例,创建一个新的虚拟环境,方法是选择 Python 解释器并创建一个 .\venv 目录来存放它,将以下代码复制到cmd终端窗口:

python -m venv --system-site-packages .\venv

激活虚拟环境:

.\venv\Scripts\activate

 在不影响主机系统设置的情况下,在虚拟环境中安装软件包。首先升级 pip

pip install --upgrade pip

pip list  # show packages installed within the virtual environment

之后退出虚拟环境:

deactivate  # don't exit until you're done using TensorFlow

4.安装 TensorFlow pip 软件包

在虚拟环境中安装:(复制以下命令到cmd窗口中)

pip install --upgrade tensorflow

在系统中安装:(复制以下命令到cmd窗口中)

pip3 install --user --upgrade tensorflow  # install in $HOME

验证安装效果,复制以下代码到终端:

虚拟环境:

python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))"

系统安装:

python3 -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000, 1000])))"

如果系统返回了张量,如下图所示,则意味着安装成功 

 

二、在Pycharm中验证是否成果安装TensorFlow

新建文件夹,输入以下代码:

import tensorflow as tf

tf.compat.v1.disable_eager_execution()
hello = tf.constant('Hello, TensorFlow!')
sess = tf.compat.v1.Session()
print(sess.run(hello))

 如果输出结果为:

 则证明已成功安装Tensorflow。

安装Tensorflow还有一些其他的容器,比如利用Docker等。祝大家安装顺利,总体来说Tensorflow安装比Pytorch顺利了很多,前期一定要把Pycharm和Python的路径以及版本一次性安装设定好,会为以后的环境配置节省很多工作。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值