[CVPR2022] BoostMIS: Boosting Medical Image Semi-Supervised Learning With Adaptive Pseudo Labeling a

BoostMIS: Boosting Medical Image Semi-Supervised Learning With Adaptive Pseudo Labeling and Informative Active Annotation

要点:

1、新型的半监督学习框架 —— BoostMIS,结合了自适应伪标记和信息性主动标注,充分发挥医学图像半监督学习的潜力
(a)BoostMIS 可以根据当前学习状态自适应地利用利用未标记数据的聚类假设和一致性正则化,该策略能够自适应地生成由任务模型预测结果转换而来的 one-hot hard labels,从而更好地训练任务模型
(b)对于低置信度的未选择的未标记图像,引入主动学习 AL(Active learning),利用虚拟对抗性扰动和模型的密度感知熵 exploiting virtual adversarial perturbation and model’s density-aware entropy,寻找信息性的样本作为注释候选样本
(c)信息性的候选样本将被送入下一个训练周期,以便更好地传播 SSL 标签
(d)自适应伪标记和信息性主动标注形成了一个相互协作的学习闭环,进一步促进了医学图像的 SSL

相关工作

SSL 半监督学习:

最近的工作 —— FixMatch:同时结合伪标记和一致性正则化,将这些技术与弱、强数据增强相结合,并且使用交叉熵损失作为正则化准则,但是,数据利用率低,忽略了相当多置信度低于阈值的未标记数据

SSL in MIA 医学图像分析中的半监督学习:

医学图像数据标注困难

半监督主动学习:

主流研究:将 VAE-GAN 结构用于 SSL,通过最小-最大博弈学习已标记和未标记样本的潜在表征,然后基于学习到的语义分布进行主动学习
最新研究:在给定一组数据增广的情况下,基于预测不一致进行组合
上述所有方法都是针对自然图像分类任务而设计的

图表:

主动学习 Active Learning 示例:

标注候选对象,可以平滑决策边界,并将具有代表性的标签信息传播到未标记数据中

在这里插入图片描述

BoostMIS图示:
1、医学图像任务模型:针对弱增强标记数据,通过监督学习训练基本的任务模型
2、基于一致性的自适应标签传播:通过动态调整阈值的伪标记和基于一致性正则化的增强,将标签信息传播到未标记样本
3、对抗的不稳定性选择器:估计未选择数据及其对应的具有扰动性的虚拟对抗样本的 KL 散度,以选择候选注释
4、平衡的不确定性选择器:均匀地选择具有高不确定性的样本作为补充数据集,以平衡后续的 SSL 训练
在这里插入图片描述

代码:

https://github.com/wannature/BoostMIS

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值