一种未知工作负载下用于故障诊断的零试学习方法

A zeroshot learning method for fault diagnosis under unknown working loads

一种未知工作负载下用于故障诊断的零试学习方法

基于数据的故障诊断是现代制造系统中的一项重要技术。然而,大多数这些诊断方法都假设所有数据应该是相同分布的。在诊断任务中,这种假设意味着这些方法只能处理来自相同工作负载的故障。在实际应用中,设备的工作负载因产品不同而不同;如果给定未知的工作负载,且没有可用的先验数据,则这些传统方法可能无效。零试学习是利用已知数据在未知工作负载下诊断故障,为解决这一问题提供了一种迁移方法。在这篇文章中一种基于压缩堆叠自动编码器的零试学习方法被提出。该方法仅由已知工作负载的数据进行训练,可以在没有先验数据的情况下从未知但相关的工作负载中诊断故障。在西储大学数据集上的实验表明,所提的方法在未知工作负载下比传统的方法有更好的性能,取得了97.82%的准确率。此外,对奇异值和特征空间的分析也表明,该方法更具鲁棒性,特征表示更具压缩性

引言

在当前的研究中,故障诊断的研究主要集中在振动信号上,诊断方法被分为了基于模型的方法和基于数据的方法。基于模型的方法如:累计和算法、卡尔曼滤波(这些方法太久远了)。然而基于模型的方法依赖知识。随着制造系统变得越来越复杂,建立显式推理模型变得越来越困难。有鉴于此,基于大数据的方法变成了一个研究热点。几种基于数据的方法,包括k-最近邻、支持向量机、神经网络和决策树算法,在故障诊断方面取得了良好的效果。

如今深度学习任务识别方面取得了最先进的性能,作为一种著名的DL模型,自动编码器广泛应用于基于数据的诊断任务中。尽管基于数据的方法已经证明有很大的改进,但大多数方法都假设数据必须是相同分布的。在诊断任务中,这种假设导致上述传统方法在恒定工作负载下工作。

不同工作负载下的故障诊断问题对应于DL中的深度迁移学习任务。与需要相同分布数据的传统DL方法不同,DTL的数据假设很弱,可以从不同但相关的分布中提取。在DTL中,数据分布被划分为了源域和目标域。这两个域是不相同的,它们对应诊断任务中的不同工作负载。DTL将来自源域的知识迁移到目标域。DTL可以被视作传统DL方法的一个推广,它们关系如图1所示:

 在DTL中从不可知工作负载中诊断故障的这种特殊情况被叫做零试学习,在这种情况下没有目标域的先验数据可以使用。在零试学习中,从源域学习到的知识被迁移到了目标域。传统的方法假设训练数据和测试数据必须有相同的分布。在传统的方法中不迁移知识,如果工作条件发生改变,这个诊断模型也需要重建。DTL不要求一个相同的数据分布但他要求来自源域的先验数据进行训练。零试学习不要求一个相同分布和来自源域的先验数据,它可以直接工作在不同的域

在这一篇文章中提出了基于压缩堆叠自动编码器的零试学习方法用于在未知工作负载下的故障诊断。该方法将应用于雅可比矩阵Frobenius范数(佛罗贝尼乌斯范数)压缩惩罚项引入堆叠式自动编码器,增强了特征空间的平滑性降低了对未知负载的敏感性。这种改进促进了特征分布的收缩,并确保模型捕获主要的故障特征。

基于数据的故障诊断

故障诊断的方法可以被分为基于模型的方法基于数据的方法。早年间,许多的研究主要集中在基于模型的方法去推断失效因素。然而,这些方法依赖知识,并且随着制造系统变得更加复杂,建立一个显示的推理模型变得困难。最近随着大数据的发展,基于数据的方法变成了研究的热点。基于数据的方法依赖历史数据和要求少量的先验知识,它易于建模,更适用于复杂制造系统的故障诊断。机器学习被广泛用于故障诊断。一般来说,机器学习的方法不能够直接工作在原始信号上,需要对原始数据进行处理(transform)。

如今,随着深度学习的发展,利用DL解决故障诊断已经引起了大家的注意。作为著名的DL模型,自动编码器被广泛的用于基于数据的故障诊断任务。尽管自动编码器在故障诊断方面已经表现出了较好的性能,但他要求收集到的训练和测试数据来自相同的工作条件

深度迁移学习和零试学习

传统的DL方法假定数据有相同的分布,这限制了DL的应用。DTL是解决数据来自不同域的一种方法。在DTL中,数据域被分为了源域和目标域,要求这两个域不能重叠。DTL的目标是从源域学习知识然后将知识迁移到目标域,其中目标域中数据缺乏(其实就是一种小样本学习,还要求源域和目标域的数据是相关的)。这一个突破促使DTL在许多领域得到了广泛的应用,如文档分类和属性预测。在不同工作负载的故障诊断任务中,这个,已知工作负载的可以视作源域,未知工作负载的需要被诊断的数据被视作目标域。有人提出了一种迁移学习的方法用于不同条件下的滚动轴承。然而,这种方法要求来自目标域的先验数据,这可能很难在现实世界中实现。一旦给定一个没有可用先验数据的工作负载,这种方法就无法使用,直到收集到足够的先验数据零样本学习是DTL的一种特殊情况,目标是解决没有来自目标域先验数据的DTL问题

堆叠自动编码器

自动编码器是神经网络中的一种特殊场景,有着很强的特征提取能力。如图2所示,自动编码器通常由编码器和解码器组成。

 编码器通过f(x)将输入映射为抽象特征h,然而解码器通过特征h重构输入。编码器和解码器的定义如下:

堆叠自动编码器的优化可以分为两部分。在第一部分,分层特征通过层级预训练进行提取。紧接着,加入了一个softmax,整个网络通过全局微调进行优化。对于第i个输入和与它对应的标签表示SAE中识别的标签,全局微调的损失函数定义如下:

 

 

 

图9显示CSA的特征具有收缩分布。这种收缩分布表明,该种方法对于来自不同数据域的数据不敏感。除此之外,CSA的雅可比矩阵接近0,这意味着比其它方法的表征空间更加平滑。

图10表示来自不同模型的特征空间的分布。

 结论和未来研究

现存的故障诊断的方法可能对于没有先验数据的未知工作负载是无效的。为了解决这个问题,在这篇文章中提出了一种基于压缩堆叠自动编码器的零试学习方法。这篇文章的贡献主要如下:首先,研究了用于零试学习的堆叠自动编码器中的压缩项。其次,所提出的CSA被应用到了未知工作负载下的故障诊断。实验结果表明,与传统方法相比,该方法能有效地解决这一问题,节省数据采集成本,并能更快地应用于实际应用中。然而,建议的CSA仅适用于相关工作负载。也就是说,如果工作负载存在显著差异,例如零负载或满载,则建议使用多模式进行诊断。此外,该方法适用于未知工作载荷下没有先验数据的情况,一旦数据可用,则应将其添加到该模型中。

本研究的局限性包括以下几个方面。首先,该方法只考虑工作载荷。在现实世界中,设备的工作条件各不相同,应考虑更多的影响因素。其次超参数很难选择,这影响了所提方法最后的性能。因此,未来的研究将会集中在以下几个方面。首先,对于多因素零样本诊断任务,该方法将得到改进。第二,研究超参数选择的自适应技术。

思考总结

本片文文章对A zero‑shot learning method for fault diagnosis under unknown working loads这篇论文的主要内容进行了一个翻译和梳理,不包括实验部分。但在这篇论文中,下边这个关于参数得导数公式我不太理解

 

懂的大佬劳烦指点一波! ! !

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值