深度注意关系网络:未知域下轴承故障诊断的零样本学习方法

Preface

在轴承故障诊断领域(BFD)深度学习(DL)取得了很好的效果,然而大多数方法假设训练集与测试集是相同的分布空间,这意味着该诊断模型不适用于其他未知域。迁移学习(TL)提高了在不同数据分布中的诊断模型性能,但依然存在以下缺陷:
1)迁移学习从源域(SD)中学习目标域(TD)的故障知识,实际工程中需要做频繁的迁移任务,限制了模型的适用性
2)迁移学习中TD的故障类型必须是已知的,若发生未知故障,迁移学习将不可用

本文提出了一种基于深度注意关系网络(DARN)的针对未知域下BFD的零样本学习方法。该方法主要包括特征提取模块和关系模块。特征提取模块用于生成输入样本的表示。关系模块计算样本对之间的关系分数,以确定它们的类型。在DARN中引入了并行注意机制(PAM),以增强所建立模型的表征能力,使关系模块更便于比较。贡献如下:
1)提出了DARN方法,从单个已知域学习故障知识,在数个未知域中测试,而训练数据不包含未知域样本。
2)关系模块可以揭示样本对之间的相似性关系来确定其类别,从而提高在几个未知领域的诊断性能。
3)引入PAM,帮助模型定位不同类别中最具鉴别性的区域,以增强DARN的特征可鉴别性,使关系模块能够更好地区分样本对之间的相似性关系。

Method

Problem Formulation

假设如下:
1)不同域中的BFD任务是相同的,即共享相同的轴承健康状态。
2)训练数据集和测试数据集是相互关联的,但由于运行环境的变化和故障的原因,它们存在不同的数据分布。
3)训练数据集仅来自一个已知领域,而测试数据集来自多个未知域,不需要参与训练过程。

Deep Attention Relation Network(DARN)

DARN主要由连续小波变换(CWT)模块、特征提取器模块 F φ 1 F^1_\varphi Fφ1、卷积注意模块 F φ 2 F^2_\varphi Fφ2和关系模块 G ϑ G_\vartheta Gϑ组成
在这里插入图片描述

CWT Module

CWT可以揭示低频和高频信息下的故障信息,保留有效信号的特征。在CWT中,通过计算时域数据 x ( t ) x (t) x(t)与小波基函数 φ a , b ( t ) \varphi_{a,b}(t) φab(t)的内积,形成小波时频映射,表示为
在这里插入图片描述
a a a是CWT的比例因子, b b b为时移因子,支持集 S S S和查询集 Q Q Q通过CWT转换为小波时频映射,并馈送给特征提取器模块。

Feature Extractor Module

CNN:4卷积2池化
S , Q S,Q S,Q分别经过特征提取得到 F φ 1 ( x i S ) F^1_\varphi(x^S_i) Fφ1(xiS) F φ 1 ( x i Q ) F^1_\varphi(x^Q_i) Fφ1(xiQ),使用 C ( ) C() C()(特征映射的深度连接)得到特征映射对 C ( F φ 1 ( x i S ) , F φ 1 ( x i Q ) ) C(F^1_\varphi(x^S_i),F^1_\varphi(x^Q_i)) C(Fφ1(xiS),Fφ1(xiQ)),输入卷积注意模块

Convolution Attention Module

CNN:2卷积2池化
后接并行注意机制(PAM)。PAM同时包括通道注意机制和空间注意机制。通道注意机制可以关注特征图对中最具代表性的特征,而空间注意机制可以定位特征图对中信息最丰富的位置。这将提高DARN的表征能力,使关系模块更具鉴别能力。
通道注意机制:MLP是多层感知器,LP是感知器, σ \sigma σ是Sigmoid函数
在这里插入图片描述
空间注意机制: f 7 × 7 f^{7\times7} f7×7表示卷积操作
在这里插入图片描述
PAM:输出 F φ 2 ( C ( F φ 1 ( x i S ) , F φ 1 ( x i Q ) ) ) F^2_\varphi(C(F^1_\varphi(x^S_i),F^1_\varphi(x^Q_i))) Fφ2(C(Fφ1(xiS),Fφ1(xiQ)))
M P A M ( F ) = M c ( F ) + M s ( F ) ( 6 ) M_{PAM}(F)=M_c(F)+M_s(F) (6) MPAM(F)=Mc(F)+Ms(F)(6)

Relation Module

关系模块由两个尺寸为1×8和尺寸为1×1的全连接块组成。
关系模块 G ϑ G_\vartheta Gϑ可以计算特征映射对 F φ 2 ( C ( F φ 1 ( x i S ) , F φ 1 ( x i Q ) ) ) F^2_\varphi(C(F^1_\varphi(x^S_i),F^1_\varphi(x^Q_i))) Fφ2(C(Fφ1(xiS),Fφ1(xiQ)))的关系得分,进行关系学习。关系分数 r i , j r_{i,j} ri,j是0到1之间的标量,表示支持集 S S S和查询集 Q Q Q之间的相似性。这意味着关系得分越高属于同一类别,而关系得分越低属于不同类别。因此,关系模块 G ϑ G_\vartheta Gϑ的输出被定义为
在这里插入图片描述
在这里插入图片描述

Optimization Objective of the DARN

最小化均方误差(MSE)
在这里插入图片描述
DARN的训练流程如算法1所示。
在这里插入图片描述

BFD Procedure

在这里插入图片描述

Experiment

Case 1

在这里插入图片描述
采用Ottawa数据集,数据集包含三个轴承健康状态,即正常(NC)、内圈故障(IF)和外圈故障(OF)。振动信号采样频率200KHz,采样时间10s。在四个时变转速条件下采集(O1-O4)。工作转速条件包括升速、降速、先升后降、先降后升。每次收集的原始信号的长度是1024。对于每个轴承的健康状态,收集了1000个样本。对于每个操作条件,数据集中有3000个样本。(表二)
建立T1、T2、T3、T4 4个诊断任务。例如,T1表示使用操作条件O1的80%数据集作为训练数据集,使用操作条件O1的剩余数据集和操作条件O2、O3、O4的数据集作为测试数据集。在T1中,O2、O3和O4相当未知的操作条件。(表三)

结果:
在这里插入图片描述
在这里插入图片描述

Case 2

采用Paderborn数据集,做法与Case 1类似。

论文

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
轴承故障诊断一直是机械故障诊断的重要研究方向,它对于提高机械设备的可靠性和安全性具有重要意义。随着深度学习技术的发展和应用,基于深度学习轴承故障诊断方法也得到了广泛关注和研究。 基于深度学习轴承故障诊断方法主要包括以下几个步骤: 1. 数据采集和处理:通过传感器采集轴承运行时的振动信号、声音信号等数据,并对数据进行预处理,如去除噪声、滤波等操作。 2. 特征提取:利用深度学习模型对预处理后的数据进行特征提取,得到轴承的特征表示。常用的深度学习模型包括卷积神经网络(CNN)、循环神经网络(RNN)等。 3. 故障诊断:利用深度学习模型对提取的特征进行分类,识别轴承是否存在故障。常用的分类模型包括支持向量机(SVM)、决策树等。 4. 故障定位:在识别出轴承存在故障后,利用深度学习模型对故障类型和位置进行定位,以便进行维护和修理。 基于深度学习轴承故障诊断方法具有以下优点: 1. 可以自动提取轴承的特征表示,不需要手动设计特征。 2. 对于复杂的轴承故障,深度学习模型可以学习到更加准确的特征表示,提高诊断精度。 3. 可以实现实时监测和诊断,提高轴承的可靠性和安全性。 4. 可以自适应地对不同类型的轴承故障进行诊断和定位。 基于深度学习轴承故障诊断方法还存在一些挑战,例如数据量较大、数据质量不高、模型可解释性不强等问题。未来的研究方向包括如何提高数据质量、如何解决小样本问题、如何提高模型的可解释性等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值