共享单车轨迹数据分析:以厦门市共享单车数据为例(六)

副标题:.基于POI数据的站点功能混合度探究——以厦门市为例(一)

为了保证数据时间尺度上的一致性,我们从互联网上下载了2020年的POI数据,POI数据来源于高德地图 API平台,包括名称、大小类、地理坐标等。并将高德地图 POI数据的火星坐标 系 GCJ-02统一转换为通用的 WGS-84地理坐标系,高德地图的POI类别共20个大类,分别为:汽车服务、汽车销售、汽车维修、摩托车服务、餐饮服务、购物服务、生活服务、体育休闲服务、医疗保健服务、住宿服务、风景名胜、商务住宅、政府机构及社会团体、科教文化服务、交通设施服务、金融保险服务、公司企业、道路附属设施、地名地址信息、公共设施,同时,每个大类别都还有二级以及三级的细小划分,具体的POI类别请参考:POI分类编码表

这里选了6大类POI进行分析,囊括了衣食住行,并将部分大类做了合并,把餐饮服务、购物服务、生活服务并称为生活服务,其他包括医疗保健服务、商务住宅、科教文化服务、交通设施服务、公司企业,具体细分项可以参照上面高德的编码表;

我们依然以厦门市为例,来通过POI来研究地铁站点分类,本篇文章研究的范围仅包含厦门的三条地铁线,不包含BRT线路,根据住房和城乡建设部于2015年颁布的 《城市轨道沿线地区规划设计导则》,轨道影响区:指距离站点约 500~800 m,所以这里我还是以常规800m影响范围来研究站点分类,这里采用允许缓冲区重叠的方式来形成缓冲区,重叠部分我认为他属于概率事件,他被A地铁站影响的同时也会受B地铁站影响,当然这个属于个人见解,如果需要形成不重叠的缓冲区,详见:ArcGIS应用指南:生成泰森多边形的缓冲区_交通站点以缓冲区范围结合泰森多边形形成的区域共同界定站域边界-CSDN博客

信息熵用于度量系统的不确定性或混乱程度。本篇文章基于地铁站的功能混合度的背景下,信息熵可以用来度量一个影响区域内不同功能类型的分布情况。具体来说,如果一个区域内的功能类型分布非常均匀,信息熵会较高;如果功能类型分布非常集中,信息熵会较低。

信息熵 H(X)的数学定义如下:

H(X) = - \sum_{i=1}^{n} P(x_i) \log_2 P(x_i)

其中:

  • X是一个离散随机变量。
  • P(xi)是随机变量 X取值为xi​ 的概率。
  • \log 2表示以2为底的对数,单位是比特

举例说明:

例如,假设某个区域有100个地块,其中30个是居住区,20个是商业区,10个是工业区,40个是绿地公园,则各功能类型的比例为:

  • 居住区:p1=0.3
  • 商业区:p2=0.2
  • 工业区:p3=0.1
  • 绿地公园:p4=0.4

根据上述比例,计算该区域的功能混合度 H(A):

H(A) = - (0.3 \log_2 0.3 + 0.2 \log_2 0.2 + 0.1 \log_2 0.1 + 0.4 \log_2 0.4)

先计算各个项的对数值:

  • \log_2 0.3 \approx -1.73697
  • \log_2 0.2 \approx -2.32193
  • \log_2 0.1 \approx -3.32193
  • \log_2 0.4 \approx -1.32193

代入公式:

H(A) = - (0.3 \times -1.73697 + 0.2 \times -2.32193 + 0.1 \times -3.32193 + 0.4 \times -1.32193)

H(A) =- \left( -0.521091 - 0.464386 - 0.332193 - 0.528772 \right)

H(A) =- \left( -1.846442 \right)

H(A)= 1.846442

信息熵约为1.846442比特,表示该区域的功能类型分布较为均匀,功能混合度较高。

接下来,就是数据处理的步骤了,先把POI导进arcgis/arcgispro里面,显示x,y数据,必要的情况下可以把高德坐标系(GCJ-02)坐标转成WGS84,然后把点通过【空间连接】,连接关系选择【一对多连接】,匹配关系选择【包含】,即面包含点;

接下来,如法炮制,我们把每一类POI都进行上述步骤,然后做成一张表格,结果如下,这里我们只对岛内的站点功能混合度进行分析,因为部分站点统计出来的POI总量甚至是个位数的,有些失真,可能是本身该区域POI数量较少,或者数据有所缺失;

岛内(湖里区、思明区)信息熵值最高的前20座地铁站结果如下;

分析

  1. 高信息熵站点(信息熵 H(A)H(A) 接近或大于2.0):

    • 体育中心:信息熵 H(A)=2.019H(A)=2.019
    • 人才中心:信息熵 H(A)=2.004H(A)=2.004
    • 湖滨中路:信息熵 H(A)=2.000H(A)=2.000
    • 结论:这些站点的各类型POI分布非常均匀,功能混合度高。这表明这些站点的交通需求多样化,乘客选择不同出行目的的可能性较高。建议继续保持现有多样性,同时关注是否有进一步优化的可能。
  2. 中等信息熵站点(信息熵 H(A)H(A) 在1.8到2.0之间):

    • 两岸金融中心:信息熵 H(A)=1.965H(A)=1.965
    • 邮轮中心:信息熵 H(A)=1.960H(A)=1.960
    • 建业路:信息熵 H(A)=1.911H(A)=1.911
    • 湖里公园:信息熵 H(A)=1.884H(A)=1.884
    • 小东山:信息熵 H(A)=1.858H(A)=1.858
    • 育秀东路:信息熵 H(A)=1.858H(A)=1.858
    • 东宅:信息熵 H(A)=1.838H(A)=1.838
    • 结论:这些站点的功能混合度较高,各类型POI分布相对均匀。可以考虑优化周边POI布局,进一步增加乘客出行目的选择,提高整体运营效率。
  3. 较低信息熵站点(信息熵 H(A)H(A) 在1.7到1.8之间):

    • 观音山:信息熵 H(A)=1.791H(A)=1.791
    • 五缘湾:信息熵 H(A)=1.781H(A)=1.781
    • 华荣路:信息熵 H(A)=1.777H(A)=1.777
    • 将军祠:信息熵 H(A)=1.771H(A)=1.771
    • 软件园二期:信息熵 H(A)=1.758H(A)=1.758
    • 火炬园:信息熵 H(A)=1.750H(A)=1.750
    • 何厝:信息熵 H(A)=1.743H(A)=1.743
    • 岭兜:信息熵 H(A)=1.726H(A)=1.726
    • 五通:信息熵 H(A)=1.715H(A)=1.715
    • 结论:这些站点的各类型POI分布相对不均匀,功能混合度中等。这表明这些站点的功能性比较单一,可能倾向于居住为导向的站点类型或者以上班通勤为导向的站点类型。可以考虑增加这些线路的周边POI类型,提高服务多样性。

结论

  • 高信息熵站点(如体育中心、人才中心、湖滨中路):这些站点周边的各类型POI分布非常均匀,功能混合度高,交通需求多样化,乘客选择不同出行目的的可能性较高。建议继续保持现有多样性,同时关注是否有进一步优化的可能
  • 中等信息熵站点(如两岸金融中心、邮轮中心、建业路、湖里公园、小东山、育秀东路、东宅):这些站点的功能混合度较高,各类型POI分布相对均匀。可以考虑优化周边POI布局,进一步增加乘客出行目的选择,提高整体运营效率。
  • 较低信息熵站点(如观音山、五缘湾、华荣路、将军祠、软件园二期、火炬园、何厝、岭兜、五通):这些站点的各类型POI分布相对不均匀,功能混合度中等。这表明这些站点的功能性比较单一,可能倾向于居住为导向的站点类型或者以上班通勤为导向的站点类型。可以考虑增加这些线路的周边POI类型,提高服务多样性。

参考文献:

1、[1]王焕栋,马红伟.基于站点兴趣点的城市轨道交通站点分类方法[J].交通与运输,2020,36(04):33-37.

2、[2]徐灏铠,黄斌.基于POI数据的厦门市轨道站点影响区功能特征分析研究[C]//中国城市规划学会城市规划新技术应用学术委员会.夯实数据底座·做强创新引擎·赋能多维场景——2022年中国城市规划信息化年会论文集.华侨大学建筑学院;华南理工大学建筑学院;,2022:7.DOI:10.26914/c.cnkihy.2022.031413.

3、[3]郑权一,赵晓龙,金梦潇,等.基于POI混合度的城市公园体力活动类型多样性研究——以深圳市福田区为例[J].规划师,2020,36(13):78-86.
4、[4]张寅桐,郭力娜,郭柳娜,等.基于POI的石家庄主城区城市功能空间特征及混合度评估[J].华北理工大学学报(自然科学版),2024,46(02):84-94.

文章仅用于分享个人学习成果与个人存档之用,分享知识,如有侵权,请联系作者进行删除。所有信息均基于作者的个人理解和经验,不代表任何官方立场或权威解读。

<think>好的,我需要帮助用户了解如何对北京市的POI数据进行聚类分析以划分功能区,并分析共享单车的分布情况。首先,我应该明确用户的需求,他们可能希望知道整个流程,包括数据获取、处理、聚类方法以及后续分析的工具和步骤。 首先,数据获取部分。用户提到POI数据,可能需要从高德地图获取。根据引用[2]和[3],高德地图的API可以获取POI数据,但需要注意接口限制和配额问题。可能需要使用多边形搜索,并将大区域分割成小区域来遍历获取数据。这部分需要详细说明步骤,比如申请API密钥、区域划分的方法,以及处理数据限制的策略,比如分批次获取或购买配额。 接下来是数据预处理。POI数据通常包含经纬度、类别等信息。需要清洗无效数据,标准化分类,可能参考高德的分类体系。比如将餐饮、商业、交通等类型统一编码。同时,可能需要空间投影转换,将WGS84坐标转换为适合距离计算的投影坐标系,如UTM,因为地理坐标系统下的距离计算不准确。 然后是聚类方法的选择。用户可能对DBSCAN比较合适,因为引用[5]提到了DBSCAN的原理和Python实现步骤。DBSCAN适合处理空间数据中的噪声,并且不需要预先指定簇的数量。需要解释参数设置,如eps和min_samples,以及如何通过k距离图来确定这些参数。另外,可能需要对比其他聚类方法,比如K-means或层次聚类,但根据POI数据的特点,DBSCAN可能更合适。 功能区的划分需要根据聚类结果和POI类别。比如,商业区可能聚集大量商业和餐饮POI,住宅区则可能有更多住宅和学校。可能需要结合每个簇内的POI类别比来定义功能区类型。如,计算每个簇内各类别的占比,应用权重或阈值来判断功能区类型。 共享单车分布分析部分,需要获取共享单车的订单数据或停车点数据,包含经纬度信息。然后与功能区进行空间关联,可能使用GIS工具进行空间连接,统计各功能区内的单车数量或使用频率。分析不同功能区的需求差异,比如商业区早晚高峰的需求变化,住宅区的夜间停放情况等。 工具方面,Python的geopandas可以处理地理空间数据,scikit-learn实现DBSCAN,folium或kepler.gl进行可视化。可能需要提到具体代码示,比如如何使用geopandas读取数据,应用DBSCAN聚类,然后合并共享单车数据进行分析。 最后,可能需要注意事项,比如数据量大的时候性能优化,使用空间索引或分布式计算。同时,结果的验证,比如通过实地调研或与其他数据源对比,确保功能区划分的准确性。 需要确保回答结构清晰,分步骤说明,引用相关的参考文献,比如高德API的使用(引用[2][3]),DBSCAN的实现(引用[5]),以及数据显著性分析(引用[1])可能对结果验证有帮助。同时,生成相关问题,帮助用户进一步探索。</think>### 基于POI数据的北京市功能区划分与共享单车分布分析 #### **一、POI数据聚类分析流程** 1. **数据获取与清洗** - **获取POI数据**:通过高德地图API多边形搜索接口获取北京市POI数据(需申请API密钥)。由于接口限制,需将北京市划分为多个小网格(如2km×2km)分批请求数据[^2][^3]。 - **数据字段**:包含名称、经纬度(WGS84坐标)、类别(如餐饮、商业、交通等)。 - **清洗与标准化**:剔除重复/无效数据,统一分类标签(参考高德分类体系)。 2. **空间数据预处理** - **坐标系转换**:将WGS84坐标转换为投影坐标系(如UTM Zone 50N),便于计算欧氏距离: ```python import geopandas as gpd df = gpd.read_file('poi.geojson') df = df.to_crs(epsg=32650) # 转换为UTM 50N ``` - **特征工程**:根据POI类别生成权重(如商业区赋予更高权重)。 3. **聚类方法选择** - **DBSCAN算法**:适用于噪声数据且无需预设簇数,通过密度扩展聚类[^5]。 - 参数调优:通过k距离图确定`eps`(邻域半径)和`min_samples`(最小样本数)。 ```python from sklearn.cluster import DBSCAN coords = df[['x', 'y']].values cluster = DBSCAN(eps=500, min_samples=10).fit(coords) # eps单位为米 df['cluster_id'] = cluster.labels_ ``` 4. **功能区定义** - **类别占比分析**:统计每个簇内POI类别占比,如: $$ \text{商业区权重} = \frac{\text{商业POI数}}{\text{总POI数}} \times 0.6 + \frac{\text{交通POI数}}{\text{总POI数}} \times 0.4 $$ - **规则定义**:设定阈值(如商业区需商业POI占比>50%)。 --- #### **二、共享单车分布关联分析** 1. **数据整合** - **共享单车数据**:获取订单起止点或停车点经纬度(需转换为相同坐标系)。 - **空间连接**:使用GIS工具将单车点关联至功能区: ```python bike_data = gpd.sjoin(bike_points,功能区边界, how='inner', op='within') ``` 2. **分布特征分析** - **密度统计**:计算各功能区内的单车点密度(单位面积数量)。 - **时间维度**:分析高峰时段(如早8-9点)的骑行量差异。 --- #### **三、实现工具与代码** - **核心工具**: - **Geopandas**:空间数据读写与操作。 - **Scikit-learn**:DBSCAN聚类实现。 - **Kepler.gl**:交互式可视化聚类结果与单车分布。 - **代码示**: ```python # 聚类与可视化 import kepler from kepler import config config.init() kepler.map(df, config={'layer': {'type': 'cluster', 'radius': 500}}) ``` --- #### **四、注意事项** 1. **数据量优化**:若数据量过大,可使用空间索引(如R-tree)加速查询。 2. **结果验证**:结合卫星影像或实地调研修正功能区标签[^4]。 3. **显著性检验**:对聚类结果进行P值分析,确保统计意义[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

图说交通

买猫粮,楼下的流浪猫在等我

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值