深度学习笔记(四)——pytorch实现神经网络案例

神经网络核心组件及其关系图

在这里插入图片描述

神经网络的核心组件

(1)层:神经网络的基本结构,将输入张量转换为输出张量。
(2)模型:层构成的网络。
(3)损失函数:参数学习的目标函数,通过最小化损失函数来学习各种参数。
(4)优化器:如何使损失函数最小。

神经网络关键组件相互关系图

在这里插入图片描述

神经网络实例

构建网络层可以基于Module类或函数(nn.functional)。nn中的大多数层在functional中都有与之对应的函数。nn.functional中函数与nn.Module中的Layer的主要区别是后者继承Module类,会自动提取可学习参数。而nn.functional更像是纯函数。两者功能相同,且性能没有很大区别。那如何选择呢?像卷积层、全连接层、Dropout层等因含有可学习的参数,一般使用nn.Module,而激活函数、池化层不含可学习参数,可以使用nn.functional中对应的函数。

背景说明

利用神经网络完成对手写数字进行识别的实例。
主要步骤:
(1)利用pytorch内置函数mnist下载数据。
(2)利用torchvision对数据进行预处理,调用torch.utils建立一个数据迭代器。
(3)可视化源数据。
(4)利用nn工具箱构建神经网络模型。
(5)实例化模型,并定义损失函数及优化器。
(6)训练模型。
(7)可视化结果

神经网络结构

使用两个隐含层,每层激活函数为ReLU,最后使用torch.max(out, 1)找出张量out最大值对应索引作为预测值。

代码示例

导入必要的模块

import numpy as np
import torch
# 导入pytorch内置的mnist数据
from torchvision.datasets import mnist
# 导入预处理模块
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
# 导入nn及优化器
import torch.nn.functional as F
import torch.optim as optim
from torch import nn

定义一些超参数

# 定义一些超参数
train_batch_size = 64
test_batch_size = 128
learning_rate = 0.01
num_epoches = 20
lr = 0.01
momentum = 0.5

下载数据并对数据进行预处理

# 定义与处理函数,这些预处理依次放在compose函数中
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])
# 下载数据,并对数据进行预处理
train_dataset = mnist.MNIST('./data', train=True, transform=transform)
test_dataset = mnist.MNIST('./data', train=False, transform=transform)
# dataloader是一个可迭代对象,可以使用迭代器一样使用
train_loader = DataLoader(train_dataset, batch_size=train_batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=test_batch_size, shuffle=False)

说明

(1)transforms.Compose可以把一些转换函数组合在一起;
(2)Normalize([0.5], [0.5])对张量进行归一化,这里两个0.5分别表示对张量进行归一化的全局平均值和方差。因图像是灰色的只有一个通道,如果有多个通道,需要有多个数字,如3个通道,应该是Normalize([m1, m2, m3], [n1, n2, n3]);
(3)download参数控制是否需要下载,如果./data目录下已有MNIST,可选择False;
(4)DataLoader得到生成器,这可节省内存;

可视化源数据

# 可视化源数据
examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)
fig = plt.figure()
for i in range(6):
    plt.subplot(2, 3, i+1)
    plt.tight_layout()
    plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
    plt.title("Ground Truth {}".format(example_targets[i]))
    plt.xticks([])
    plt.yticks([])
plt.show()

构建模型

# 构建网络
class Net(nn.Module):
    '''
    使用sequential构建网络,sequential()函数的功能是将网络的层组合到一起
    '''
    def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
        super(Net, self).__init__()
        self.layer1 = nn.Sequential(nn.Linear(in_dim, n_hidden_1), nn.BatchNorm1d(n_hidden_1))
        self.layer2 = nn.Sequential(nn.Linear(n_hidden_1, n_hidden_2), nn.BatchNorm1d(n_hidden_2))
        self.layer3 = nn.Sequential(nn.Linear(n_hidden_2, out_dim))

    def forward(self, x):
        x = F.relu(self.layer1(x))
        x = F.relu(self.layer2(x))
        x = self.layer3(x)
        return x
"""实例化网络"""
# 检测是否有可用的GPU,有则使用,否则使用CPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 实例化网络
model = Net(28 * 28, 300, 100, 10)
model.to(device)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)

训练模型

# 开始训练
losses = []
acces = []
eval_losses = []
eval_acces = []
for epoch in range(num_epoches):
    train_loss = 0
    train_acc = 0
    model.train()
# 动态修改参数学习率
    if epoch % 5 == 0:
        optimizer.param_groups[0]['lr'] *= 0.1
    for img, label in train_loader:
        img = img.to(device)
        label = label.to(device)
        img = img.view(img.size(0), -1)
        # 前向传播
        out = model(img)
        loss = criterion(out, label)
        # 反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        # 记录误差
        train_loss += loss.item()
        # 计算分类的准确率
        _, pred = out.max(1)
        num_correct = (pred == label).sum().item()
        acc = num_correct / img.shape[0]
        train_acc += acc

    losses.append(train_loss / len(train_loader))
    acces.append(train_acc / len(train_loader))
    # 在测试集上检测效果
    eval_loss = 0
    eval_acc = 0
# 将模型改为预测模式
    model.eval()
    for img, label in test_loader:
        img = img.to(device)
        label = label.to(device)
        img = img.view(img.size(0), -1)
        out = model(img)
        loss = criterion(out, label)
        # 记录误差
        eval_loss += loss.item()
        # 记录准确率
        _, pred = out.max(1)
        num_correct = (pred == label).sum().item()
        acc = num_correct / img.shape[0]
        eval_acc += acc

    eval_losses.append(eval_loss / len(test_loader))
    eval_acces.append(eval_acc / len(test_loader))
    print('epoch: {}, Train Loss: {:.4f}, Train Acc: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}'.format(
        epoch, train_loss / len(train_loader), train_acc / len(train_loader), eval_loss / len(test_loader), eval_acc / len(test_loader)
    ))

可视化训练及测试损失值

plt.title('trainloss')
plt.plot(np.arange(len(losses)), losses)
plt.legend(['Train Loss'], loc='upper right')
plt.show()

如何构建神经网络

在nn工具箱中,可以直接引用的网络有很多,有全连接层、卷积层、循环层、正则化层、激活层等。那么如何组织或构建这些层显得很关键。

构建网络层

pytorch中采用torch.nn.Sequential()来构建网络层,这个有点类似Keras的models.Sequential()。不过这种方法每层的编码是默认的数字,不易区分。
如果要对每层定义一个名称,我们可以采用Sequential的一种改进方法,在Sequential的基础上,通过add_module()1添加每一层,并且为每一层增加一个单独的名字。
此外,还可以在Sequential基础上,通过字典的形式添加每一层,并且设置单独的层名称。
以下是采用字典方式构建网络的一个示例代码:

class Net(torch.nn.Module):
    def __init(self):
        super(Net, self).__init()
        self.conv = torch.nn.Sequential(
            OrderedDict(
            [
                ("conv1", torch.nn.Conv2d(3, 32, 3, 1, 1)),
                ("relu1", torch.nn.ReLU()),
                ("pool", torch.nn.MaxPool2d(2))
            ]
        ))
        self.dense = torch.nn.Sequential(
            OrderedDict([
                ("dense1", torch.nn.Linear(32 * 3 * 3, 128)),
                ("relu2", torch.nn.ReLU()),
                ("dense2", torch.nn.Linear(128, 10))
            ])
        )

这里不要忘了在导入库的时候添加如下语句:

from collections import OrderedDict

前向传播

定义好每层后,最后还需要通过前向传播的方式把这些串起来。这就是设计如何定义forward函数的问题。forward函数的任务需要把输入层、网络层、输出层链接起来,实现信息的前向传导。该函数的参数一般为输入数据,返回值为输出数据。
在forward函数中,有些层来自nn.Module,也可以使用nn.functional定义。来自nn.Module的需要实例化,而使用nn.functional定义的可以直接使用。

反向传播

直接让损失函数loss调用backward()即可,后续文章会介绍pytorch的自动反向传播功能。

训练模型

训练模型要注意使模型处于训练模式,即调用model.train()。调用model.train()会把所有的module设置为训练模式。如果是测试或验证阶段,需要使模型处于验证阶段,即调用model.eval(),调用model.eval()会把所有的training属性设置为False。
缺省情况下,梯度是累加的,需要手工把梯度初始化或清零,调用optimizer.zero_grad()即可。训练过程中,正向传播生成网络的输出,计算输出和实际值之间的损失值。调用loss.backward()自动生成梯度,然后使用optimizer.step()执行优化器,把梯度传播回每个网络。
如果希望用GPU训练,需要把模型、训练数据、测试数据发送到GPU上,即调用.to(device)。如果需要使用多GPU进行处理,可使模型或相关数据引用nn.DataParallel。

参考文献

吴茂贵,郁明敏,杨本法,李涛,张粤磊. Python深度学习(基于Pytorch). 北京:机械工业出版社,2019.


  1. def add_module(self,
    name: str,
    module: Optional[Module]) -> None
    Adds a child module to the current module.
    The module can be accessed as an attribute using the given name.
    Params:
    name – name of the child module. The child module can be accessed from this module using the given name
    module – child module to be added to the module.
    这里module可以是torch.nn中的任何一个网络层模型,例如:conv。
    add_module()方法需要通过torch.nn.Sequential实例化才可以使用。 ↩︎

  • 7
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
【课程介绍】      Pytorch项目实战 垃圾分类课程从实战的角度出发,基于真实数据集与实际业务需求,结合当下最新话题-垃圾分类问题为实际业务出发点,介绍最前沿的深度学习解决方案。    从0到1讲解如何场景业务分析、进行数据处理,模型训练与调优,最后进行测试与结果展示分析。全程实战操作,以最接地气的方式详解每一步流程与解决方案。    课程结合当下深度学习热门领域,尤其是基于facebook 开源分类神器ResNext101网络架构,对网络架构进行调整,以计算机视觉为核心讲解各大网络的应用于实战方法,适合快速入门与进阶提升。【课程要求】 (1)开发环境:python版本:Python3.7+; torch版本:1.2.0+; torchvision版本:0.4.0+ (2)开发工具:Pycharm;(3)学员基础:需要一定的Python基础,及深度学习基础;(4)学员收货:掌握最新科技图像分类关键技术;(5)学员资料:内含完整程序源码和数据集;(6)课程亮点:专题技术,完整案例,全程实战操作,徒手撸代码【课程特色】 阵容强大讲师一直从事与一线项目开发,高级算法专家,一直从事于图像、NLP、个性化推荐系统热门技术领域。仅跟前沿基于当前热门讨论话题:垃圾分类,课程采用学术届和工业届最新前沿技术知识要点。实战为先根据实际深度学习工业场景-垃圾分类,从产品需求、产品设计和方案设计、产品技术功能实现、模型上线部署。精心设计工业实战项目保障效果项目实战方向包含了学术届和工业届最前沿技术要点项目包装简历优化课程内垃圾分类图像实战项目完成后可以直接优化到简历中【课程思维导图】 【课程实战案例
PyTorch是一个基于Python的开源机器学习框架,它提供了一个强大的深度神经网络工具包,被广泛应用于深度学习领域。 深度神经网络是一类由多层神经元组成的人工神经网络,可以用于解决各种复杂的机器学习问题。PyTorch提供了一套丰富的工具和函数,使得构建和训练深度神经网络变得简单而直观。 在 PyTorch 中,使用深度神经网络可以通过定义一个神经网络模型的类来实现。这个类可以包含多个层和神经元,并通过前向计算和反向传播实现梯度更新。PyTorch提供了各种不同类型的层,例如全连接层、卷积层、循环神经网络层等,可以根据具体的任务需求灵活选择不同的层类型。 PyTorch 的深度神经网络还支持在不同的计算设备上进行训练,例如CPU和GPU。通过简单的代码更改,可以实现在GPU上运行,加速训练过程。 在训练深度神经网络时,PyTorch提供了一套优化器(optimizer)来优化模型参数。常用的优化器包括随机梯度下降(SGD)、Adam、RMSprop等。此外,PyTorch还提供了一套完整的工具来监测和评估模型的性能,例如定义损失函数、计算准确率等。 总之,PyTorch深度神经网络是一个功能强大的框架,可以帮助研究人员和开发人员轻松构建和训练深度神经网络模型。它的简单易用和灵活性使得它成为当前深度学习领域广泛使用的工具之一。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值