M - 魔戒
Description
蓝色空间号和万有引力号进入了四维水洼,发现了四维物体–魔戒。
这里我们把飞船和魔戒都抽象为四维空间中的一个点,分别标为 “S” 和 “E”。空间中可能存在障碍物,标为 “#”,其他为可以通过的位置。
现在他们想要尽快到达魔戒进行探索,你能帮他们算出最小时间是最少吗?我们认为飞船每秒只能沿某个坐标轴方向移动一个单位,且不能越出四维空间。
Input
输入数据有多组(数据组数不超过 30),到 EOF 结束。
每组输入 4 个数 x, y, z, w 代表四维空间的尺寸(1 <= x, y, z, w <= 30)。
接下来的空间地图输入按照 x, y, z, w 轴的顺序依次给出,你只要按照下面的坐标关系循环读入即可。
for 0, x-1
for 0, y-1
for 0, z-1
for 0, w-1
保证 “S” 和 “E” 唯一。
Output
对于每组数据,输出一行,到达魔戒所需的最短时间。
如果无法到达,输出 “WTF”(不包括引号)。
Samples
Sample #1
Input
2 2 2 2
…
.S
…
#.
#.
.E
.#
…
2 2 2 2
…
.S
#.
E.
.#
#.
…
Output
1
3
分析:
四维空间+bfs算法
代码量有点大,一不小心就容易出错
#include<bits/stdc++.h>
const int N = 55;
using namespace std;
int A,B,C,D;
char mp[N][N][N][N];
bool vis[N][N][N][N];
int dirx[]= {0, 0, 0, 0, 0, 0, 1, -1};
int diry[]= {0, 0, 0, 0, 1, -1, 0, 0};
int dirz[]= {0, 0, 1, -1, 0, 0, 0, 0};
int dirw[]= {1, -1, 0, 0, 0, 0, 0, 0};
int flag;
int aa, bb, cc, dd;
struct node
{
int x;
int y;
int z;
int w;
int sum;
};
int judge(int x, int y, int z, int w)
{
if (x >= 0 && x < A && y >= 0 && y < B && z >= 0 && z < C && w >= 0 && w < D && vis[x][y][z][w] == 0 && mp[x][y][z][w] != '#')
return 1;
return 0;
}
void bfs(int aa, int bb, int cc, int dd)
{
queue<node>Q;
node a;
a.x = aa;
a.y = bb;
a.z = cc;
a.w = dd;
a.sum = 0;
vis[aa][bb][cc][dd] = 1;
Q.push(a);
flag = 1;
while (!Q.empty())
{
a = Q.front();
Q.pop();
if (mp[a.x][a.y][a.z][a.w] == 'E')
{
printf ("%d\n", a.sum);
flag = 0;
break;
}
for (int i = 0; i < 8; i++)
{
node b;
b = a;
b.x += dirx[i];
b.y +=diry[i];
b.z += dirz[i];
b.w += dirw[i];
if (judge(b.x, b.y, b.z, b.w))
{
b.sum++;
vis[b.x][b.y][b.z][b.w] = 1;
Q.push(b);
}
}
}
if (flag)
printf ("WTF\n");
}
int main ()
{
while(cin >> A >> B >> C >> D)
{
getchar();
for (int i = 0; i < A; i++)
{
for (int j = 0; j < B; j++)
{
for (int k = 0; k < C; k++)
{
for(int l = 0; l < D; l++)
{
cin >> mp[i][j][k][l];
if (mp[i][j][k][l] == 'S')
{
aa = i;
bb = j;
cc = k;
dd = l;
}
}
getchar();
}
}
}
memset(vis, 0, sizeof(vis));
bfs(aa, bb, cc, dd);
}
return 0;
}