有哪些常见的垃圾回收算法?
⚫1960年John McCarthy发布了第一个GC算法:标记-清除算法。
⚫1963年Marvin L. Minsky 发布了复制算法。
本质上后续所有的垃圾回收算法,都是在上述两种算法的基础上优化而来。
垃圾回收算法-标记清除算法
标记清除算法的核心思想分为两个阶段:
1.标记阶段,将所有存活的对象进行标记。Java中使用可达性分析算法,从GC Root开始通过引用链遍历出
所有存活对象。
2.清除阶段,从内存中删除没有被标记也就是非存活对象。
垃圾回收算法-标记清除算法的优缺点
优点:实现简单,只需要在第一阶段给每个对象维护标志位,第二阶段删除对象即可。
缺点:1.碎片化问题
由于内存是连续的,所以在对象被删除之后,内存中会出现很多细小的可用内存单元。如果我们需要的是一个比较大的空间,很有可能这些内存单元的大小过小无法进行分配
2.分配速度慢。由于内存碎片的存在,需要维护一个空闲链表,极有可能发生每次需要遍历到链表的最后才能获得合适的内存空间。
垃圾回收算法-复制算法
复制算法的核心思想是:
1.准备两块空间From空间和To空间,每次在对象分配阶段,只能使用其中一块空间(From空间)。
2.在垃圾回收GC阶段,将From中存活对象复制到To空间。
3.将两块空间的From和To名字互换。
垃圾回收算法-标记整理算法
标记整理算法也叫标记压缩算法,是对标记清理算法中容易产生内存碎片问题的一种解决方案。
核心思想分为两个阶段:
1.标记阶段,将所有存活的对象进行标记。Java中使用可达性分析算法,从GC Root开始通过引用链遍历出
所有存活对象。
2.整理阶段,将存活对象移动到堆的一端。清理掉存活对象的内存空间。
垃圾回收算法-分代垃圾回收算法
现代优秀的垃圾回收算法,会将上述描述的垃圾回收算法组合进行使用,其中应用最广的就是分代垃圾回收
算法(Generational GC)。
分代垃圾回收将整个内存区域划分为年轻代和老年代:
垃圾回收算法-分代垃圾回收算法
分代回收时,创建出来的对象,首先会被放入Eden伊甸园区。
随着对象在Eden区越来越多,如果Eden区满,新创建的对象已经无法放入,就会触发年轻代的GC,称为
Minor GC或者Young GC。
Minor GC会把需要eden中和From需要回收的对象回收,把没有回收的对象放入To区。
接下来,S0会变成To区,S1变成From区。当eden区满时再往里放入对象,依然会发生Minor GC。
此时会回收eden区和S1(from)中的对象,并把eden和from区中剩余的对象放入S0。
注意:每次Minor GC中都会为对象记录他的年龄,初始值为0,每次GC完加1。
如果Minor GC后对象的年龄达到阈值(最大15,默认值和垃圾回收器有关),对象就会被晋升至老年代。
当老年代中空间不足,无法放入新的对象时,先尝试minor gc如果还是不足,就会触发Full GC,Full GC会对整个
堆进行垃圾回收。
如果Full GC依然无法回收掉老年代的对象,那么当对象继续放入老年代时,就会抛出Out Of Memory异常。
垃圾回收算法-分代垃圾回收算法优点
程序中大部分对象都是朝生夕死,在年轻代创建并且回收,只有少量对象会长期存活进入老年代。分代垃圾
回收的优点有:
1、可以通过调整年轻代和老年代的比例来适应不同类型的应用程序,提高内存的利用率和性能。
2、新生代和老年代使用不同的垃圾回收算法,新生代一般选择复制算法效率高、不会产生内存碎片,老年
代可以选择标记-清除和标记-整理算法,由程序员来选择灵活度较高。
3、分代的设计中允许只回收新生代(minor gc),如果能满足对象分配的要求就不需要对整个堆进行回收(full gc),STW(Stop The World)由垃圾回收引起的停顿时间就会减少。
有哪些常用的垃圾回收器
垃圾回收器是垃圾回收算法的具体实现。
由于垃圾回收器分为年轻代和老年代,除了G1之外其他垃圾回收器必须成对组合进行使用。
具体的关系图如下:
垃圾回收器的组合关系虽然很多,但是针对几个特定的版本,比较好的组合选
择如下:
JDK8及之前:
ParNew + CMS(关注暂停时间)、Parallel Scavenge + Parallel Old (关注
吞吐量)、 G1(JDK8之前不建议,较大堆并且关注暂停时间)
JDK9之后:
G1(默认)
从JDK9之后,由于G1日趋成熟,JDK默认的垃圾回收器已经修改为G1,所以
强烈建议在生产环境上使用G1。
如果对低延迟有较高的要求,可以使用Shenandoah或者ZGC。
如何解决内存泄漏问题
什么是内存泄漏,如何解决内存泄漏问题?
⚫ 内存泄漏(memory leak):在Java中如果不再使用一个对象,但是该对象依然在GC ROOT的引用链上,这个对象就不会被垃圾回收器回收,这种情况就称之为内存泄漏。
⚫ 少量的内存泄漏可以容忍,但是如果发生持续的内存泄漏,就像滚雪球雪球越滚越大,不管有多大的内存迟早会被消耗完,最终导致的结果就是内存溢出。
解决内存泄漏问题的思路
发现问题 – 堆内存状况的对比
生产环境通过运维提供的Prometheus + Grafana等监控平台查看
开发、测试环境通过visualvm查看
诊断 – 生成内存快照
⚫ 当堆内存溢出时,需要在堆内存溢出时将整个堆内存保存下来,生成内存快照(Heap Profile )文件。
生成方式有两种
1、内存溢出时自动生成,添加生成内存快照的Java虚拟机参数:
-XX:+HeapDumpOnOutOfMemoryError:发生OutOfMemoryError错误时,自动生成hprof内存快照文件。
-XX:HeapDumpPath=
2、导出运行中系统的内存快照,比较简单的方式有两种,注意只需要导出标记为存活的对象:
通过JDK自带的jmap命令导出,格式为:
jmap -dump:live,format=b,file=文件路径和文件名 进程ID
通过arthas的heapdump命令导出,格式为:
heapdump --live 文件路径和文件名
诊断 – MAT定位问题
⚫ 使用MAT打开hprof文件,并选择内存泄漏检测功能,MAT会自行根据内存快照中保存的数据分析内存泄漏的根源
修复问题
修复内存溢出问题的要具体问题具体分析,问题总共可以分成三类
常用的JVM工具
JDK自带的命令行工具:
◆ jps 查看java进程,打印main方法所在类名和进程id
◆ jmap 1、生成堆内存快照
2、打印类的直方图
第三方工具:
VisualVM 监控
Arthas 综合性工具
MAT 堆内存分析工具
监控工具:
Prometheus + grafana
常见的JVM参数
常见的JVM参数
◼ 参数1 : -Xmx 和 –Xms
-Xmx参数设置的是最大堆内存,但是由于程序是运行在服务器或者容器上,计算可用内存时,要将元空间、操作系统、
其它软件占用的内存排除掉。
案例: 服务器内存4G,操作系统+元空间最大值+其它软件占用1.5G,-Xmx可以设置为2g。
最合理的设置方式应该是根据最大并发量估算服务器的配置,然后再根据服务器配置计算最大堆内存的值。
建议将-Xms设置的和-Xmx一样大,运行过程中不再产生扩容的开销。
◼ 参数2 : -XX:MaxMetaspaceSize 和 -Xss
-XX:MaxMetaspaceSize=值 参数指的是最大元空间大小,默认值比较大,如果出现元空间内存泄漏会让操作系
统可用内存不可控,建议根据测试情况设置最大值,一般设置为256m。
-Xss256k 栈内存大小,如果我们不指定栈的大小,JVM 将创建一个具有默认大小的栈。大小取决于操作系统和计
算机的体系结构。比如Linux x86 64位 : 1MB,如果不需要用到这么大的栈内存,完全可以将此值调小节省内存
空间,合理值为256k – 1m之间。
◼ 参数3:
➢ -Xmn 年轻代的大小,默认值为整个堆的1/3,可以根据峰值流量计算最大的年轻代大小,尽量让对象只存放在年
轻代,不进入老年代。但是实际的场景中,接口的响应时间、创建对象的大小、程序内部还会有一些定时任务等不
确定因素都会导致这个值的大小并不能仅凭计算得出,如果设置该值要进行大量的测试。G1垃圾回收器尽量不要设
置该值,G1会动态调整年轻代的大小。
常见的JVM参数
◆ 打印GC日志
JDK8及之前 : -XX:+PrintGCDetails -XX:+PrintGCDateStamps -Xloggc:文件路径
JDK9及之后 : -Xlog:gc*:file=文件路径
◆ -XX:+DisableExplicitGC
禁止在代码中使用System.gc(), System.gc()可能会引起FULLGC,在代码中尽量不要使用。使用
DisableExplicitGC参数可以禁止使用System.gc()方法调用。
◆ -XX:+HeapDumpOnOutOfMemoryError:发生OutOfMemoryError错误时,自动生成hprof内存快照文件。
-XX:HeapDumpPath=
解决问题 - 优化基础JVM参数
JVM参数模板:
注意:
JDK9及之后gc日志输出修改为 -Xlog:gc*:file=文件名
堆内存大小和栈内存大小根据实际情况灵活调整。