TensorRT(8):python版本安装,CUDA11.0,win10

windows下安装TensorRT

一、底层库依赖

在安装TensorRT前,首先需要安装CUDA、CUDNN等NVIDIA的基本库,如何安装,已经老生常谈了,这里不再过多描述。
关于版本的选择,楼主这里:

CUDA版本,楼主这里选择的是 cuda11.0 ,具体cuda版本见https://developer.nvidia.com/cuda-toolkit-archive,可自行下载。
CUDNN版本,选择 cudnn-11.0-windows-x64-v8.2.1.32,官网下载需要先注册账号,https://developer.nvidia.com/rdp/cudnn-archive
pycuda 选择 11.4

二、下载并安装TensorRT库

法一:通过pip安装

目前 pip wheel 的方式只支持 Python 3.6 - 3.9,CUDA 11.x,因为我们不是在系统的 Python 里安装,CUDA 版本暂时不用管。

        之后需要安装 nvidia-pyindex 包,这其实是一个 pip 源,用来连接英伟达的服务器下载我们需要的各种包。所以如果安装的时候,pip 下载很慢也只能等着,只能从英伟达的服务器下载,pip 换源也没用。安装 nvidia-pyindex 包用下面这条命令:

pip install nvidia-pyindex

安装装好之后,就可以开始安装 TensorRT 了。使用下面的命令:

pip install --upgrade nvidia-tensorrt

 这条命令会安装或者更新已有的 TensorRT,同时会自动下载安装 CUDA 和 cuDNN,它们是 TensorRT 的依赖包。因为安装的时候没有指定版本号,这里默认都会安装最新的版本,CUDA 的版本可能比我们实际支持的版本更高。在终端输入  nvidia-smi 可以查看显卡状态,上面会显示支持的 CUDA 版本。使用 deb 方式安装时,要在系统里安装 CUDA,要和这里的版本号一致,安装在虚拟环境里时就不需要了。

        安装的时候如果出现下面的错误信息,说明没用被正确的安装,除了可能是 Python 版本不对外,也有可能是驱动没装上。

This package can be installed as:
```
$ pip install nvidia-pyindex
$ pip install nvidia-tensorrt

参考文章:https://www.cnblogs.com/asnelin/archive/2022/02/24/15929442.html 

法二:通过官网下载ZAR包安装 

1.首先去官网下载对应的TensorRT版本
https://developer.nvidia.com/nvidia-tensorrt-8x-download

2.点击 Download Now(需要登录英伟达账号,没有的注册一个)

3.选择下载的版本

4.完成问卷调查

5.选择同意协议

楼主选的这,再选择对应的系统版本

 6.根据自己的系统版本和 CUDA 版本,选择安装包,如图所示(如果是完整安装,建议选择Tar File Install Packages,这样可以自行选择安装位置)

 

 解压下来对应多个文件,把lib里的所有dll库都拷贝到cuda在的目录下(或者添加到环节变量)。

 拷贝到 :C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\bin

最后,控制台进入安装包的python目录,选择对应的python版本进行安装即可

 如楼主这里是python3.8

在conda环境输入其所在的目录,安装即可:

pip install "C:\Users\lenovo\Desktop\复试\TensorRT-8.2.3.0\python\tensorrt-8.2.3.0-cp38-none-win_amd64.whl"

三、测试是否安装成功

 进入python环境,输入:

import tensorrt as trt
print(trt.__version__)

则安装成功

参考文章:TensorRT(10):python版本安装_python安装tensorrt_hjxu2016的博客-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值